Coddle Creek Tributary (Indian Run) Stream Restoration EEP Project # 94

Monitoring Report Year 1 of 5 Cabarrus County, North Carolina

Prepared for:

North Carolina Department of Environmental and Natural Resources Ecosystem Enhancement Program 1601 Mail Service Center Raleigh, NC 27699-1601

Construction Completed: March 27, 2011
Data Collected: May 2012
Report Submission: September 2012

Coddle Creek Tributary (Indian Run) Stream Restoration Project # 94

Monitoring Report Year 1 of 5 Cabarrus County, North Carolina

TABLE OF CONTENTS

1.0	EXECUTIVE SUMMARY	1
2.0	METHODOLOGY	3
	REFERENCES	

APPENDICES

APPENDIX A PROJECT VICINITY MAPS AND BACKGROUND TABLES

Figure 1 – Restoration Site Vicinity Map

Figure 2 – USGS Concord SE Quad Map

Table 1a – Project Components

Table 1b – Component Summations

Table 2 – Project Activity and Reporting History

Table 3 – Project Contacts

Table 4 – Project Attributes

APPENDIX B VISUAL ASSESSMENT

Figure 3a – Current Condition Plan View (Upper Reach)

Figure 3b – Current Condition Plan View (Lower Reach)

Table 5a - Visual Stream Morphology Stability Assessment - Upper Reach

Table 5b - Visual Stream Morphology Stability Assessment - Lower Reach

Table 6 – Vegetation Condition Assessment

Photos – Permanent Photo Points

Photos – Vegetation Plots

APPENDIX C VEGETATION DATA

Table 7 – Vegetation Plot Mitigation Success Summary

Table 8 – CVS Vegetation Metadata

Table 9 – Vegetation Plot Data

APPENDIX D RECORD DRAWINGS AND FINAL REPORT

Cross-Sections with Annual Overlays Longitudinal Profiles with Annual Overlays Pebble Count Plots with Annual Overlays Table 10a – Baseline Stream Data Summary – Upper Reach

Table 10b – Baseline Stream Data Summary – Lower Reach

Table 11a – Monitoring Data – Dimensional Morphology Summary

Table 11b – Monitoring Data – Stream Reach Data Summary – Upper Reach

Table 11c – Monitoring Data – Stream Reach Data Summary – Lower Reach

APPENDIX E HYDROLOGIC DATA

Table 12 – Verification of Bankfull Events

1.0 EXECUTIVE SUMMARY

The Coddle Creek Tributary (Indian Run) Stream Restoration Project, completed in March 2011, enhanced (level1) or restored a total of 2,270 linear feet of stream in the Upper Rocky River watershed including restoring 6.17 acres of riparian buffer. In addition, approximately 852 linear feet of stream was preserved within the 19.61 acre conservation easement. The project is located in the USGS Hydrologic Unit (HU) 03040105020010 of the Yadkin Pee-Dee River Basin. This HU is within the EEP's Upper Rocky River Local Watershed Plan and is also listed as a Targeted Local Watershed (TLW) in EEP's Lower Yadkin Pee-Dee River Basin Restoration Priorities Plan 2009. The project goals and objectives are listed below.

Project Goals

- Improve local water quality by reestablishing stream stability and capacity to transport watershed flows and sediment load.
- Provide additional floodplain storage by increasing the capacity of the stream to mitigate flood flows.
- Restore aquatic and riparian habitat.
- Reducing non-point source sedimentation and nutrient inputs into the project reaches.

Project Objectives

- Restore/Enhance (level 1) 2,270 linear feet of stable stream channel morphology, supported by instream habitat and grade/bank stabilization structures.
- Preserve 852 linear feet of stream within the conservation easement.
- Eliminate accelerated bank erosion by creating a bankfull bench, floodplain, and laying back slopes.
- Reestablish a native riparian buffer.

The project site, which is protected by a 19.61-acre permanent conservation easement held by the State of North Carolina, is situated in Cabarrus County in the Southern Outer Piedmont ecoregion of the Piedmont physiographic province. Coddle Creek, from 0.2 miles upstream of NC Highway 73 (NC-73) to Rocky River, is currently listed on the NC 303(d) List as biologically impaired (NCDENR 2010). In addition to the current non-supporting use classification for the lower portions of Coddle Creek, anticipated high rates of development in the watershed pose critical challenges in managing the region's aquatic resources. Land Use / Land Cover analysis indicates that more than 90 percent of the 1.5- square mile Indian Run watershed is currently pervious with a dominance of forested lands, and about 8 to 10 percent is impervious land (Figures 3a & 3b). It is likely that the majority of the watershed will be built-out within 10 to 20 years. Anticipated impervious cover (as a percentage of the total watershed) is likely to approach 25 to 30 percent at built-out conditions.

The vegetative success of the restoration site is based on criteria established in the USACE Stream Mitigation Guidelines (2003). Vegetation monitoring will be considered successful if a minimum of 260 planted stems/acre are surviving at the end of five years. The interim measure of vegetative success for the site will be the survival of a minimum of 320 planted stems/acre in year three and 288 stems/acre at the end of year four. The Monitoring Year 1 (MY1) stem counts are located in Tables 7 and 9 in Appendix C. Currently, all 11 vegetation plots are meeting the interim measures of success. Vegetation throughout the reach appears to be growing at acceptable rates and the mortality rate appears to be fairly low.

One location was noted along the reach as having sparse vegetation as a result of deposition on the floodplain. This area is located on the lower reach near Sta. 11+25 and illustrated on the Current Condition Plan View (CCPV) in Appendix B. In addition to this location, there is an increasing number of cattails (*Typha latifolia*) growing within the stream. These locations are noted on the CCPV and represent approximately 489 linear feet of the reach or 22 % of the total reach. The cattails are likely to continue to grow and take over additional stream footage without maintenance activities to control the growth. The cattails aren't currently creating issues to the current vegetation; however, they may start outcompeting other riparian herbaceous species and appear to be having some effects on channel morphology. The CCPV also illustrates an easement encroachment planting area. This area was replanted during construction as a developer had cleared into the conservation easement. No new encroachments were noted.

The upper and lower reaches of the restoration project were observed to be in stable condition. The channel's profile and cross-sections adjusted minimally from the baseline conditions. The channel accesses its floodplain and evidence of bankfull events were observed during Year 1 monitoring. This evidence included the presence of wrack lines, sediment deposits, and the crest gauge. The substrate shows a gradual change to more coarse material in the upper reach although the lower reach still has finer sediment. This is expected as the lower reach is an offline channel restoration and the larger particles haven't yet migrated downstream. Sediment transport analysis and shear stress fall within acceptable ranges and similar to those of the baseline condition.

One notable area of aggradation was observed on the upper reach at Sta. 26+50. This area has a small midchannel bar forming and could be the result of some of the cattail growth in that location. Other minor areas of aggradation are noted on the CCPV. These areas seem to be closely associated with the cattails found growing in the channel. These areas do not appear to be negatively impacting the channel morphology at this time. One location of a bank failure occurred upstream of Sta. 22+00 on the upper reach and was approximately 25 linear feet. The cause of the bank erosion is not known but possibly due to poor bank material. The bank does have vegetation on it and will be monitored for further degradation. At approximately Sta. 18+00 on the left bank of the upper reach an area noted as a terrace rill was noted on the CCPV. This is an approximately 15-foot segment and will be monitored for additional erosion. This bank was heavily armored due to a storm event during construction and the structure looks to be in stable condition. One final area of concern was noted on the upper reach at approximately Sta. 14+75 beyond the project area. This area was collecting a growing amount of debris at the permanent sewer line crossing and was determined to be a beaver dam during the 8/16/2012 EEP site visit.

Summary information/data related to the occurrence of items such as beaver or encroachment and statistics related to performance of various project and monitoring elements can be found in the tables and figures in the report appendices. Narrative background and supporting documentation formerly found in these reports can be found in the Baseline Monitoring Report (formerly Mitigation Plan) and in the Mitigation Plan (formerly the Restoration Plan) documents available on EEP's website. All raw data supporting the tables and figures in the appendices is available from EEP upon request.

2.0 METHODOLOGY

Channel stability and vegetation survival were monitored on the project site. Post restoration monitoring will occur for a minimum of five years or until the success criteria are met. The monitoring survey was completed using submeter accuracy GPS and rod and level on May 29 and 30, 2012. This report details the results of Monitoring Year 1.

2.1 Morphometric Parameters and Channel Stability

2.1.1 Profile

The entire length of the reach was surveyed by HDR using GPS and a rod and level. Multiple parameters were located including top of bank, thalweg, and water surface. The longitudinal profiles show that the bed features are stable. Riffles throughout the upper and lower reach show a general trend of becoming shorter and steeper in Year 1 as compared to baseline. However, overall channel and bankfull slopes remain consistent in comparison to the baseline condition. Pool slopes and depths remain stable and similar to baseline values as well.

A large presence and growth of cattails was noted in the lower reach as well as a small portion of the lower end of the upper reach. The presence of cattails in these areas has removed distinct bed features (riffles, pools, etc.) or at least made them difficult to discern. Cattail removal is recommended to allow bed features to form.

2.1.2 Dimension

Eight cross sections were surveyed by HDR staff on May 29 and 30, 2012. The morphological data is presented in Tables 10 and 11 in Appendix D, along with the cross-sectional data. The channel cross-section dimensions lie within the design parameters for this reach. Comparison with baseline values, along with visual assessment, show no excessive aggradation, degradation, or trends toward instability in the cross sections.

2.1.3 Pattern

The pattern of the channel was obtained using GPS. The location is illustrated on the current condition plan view map in Appendix B. No lateral movement in stream pattern was observed in Year 1 monitoring.

2.1.4 Substrate

Pebble counts were taken for Year 1 monitoring. The Wolman Pebble count methodology was used to calculate the D50 and D84 to assess changes in particle size distributions at all of the permanent cross-sections. Pebble count data for the upper reach cross sections indicate similar values compared to baseline. The exception would be the upper most riffle section where significantly larger material

dominates the bed compared to the baseline value. This indicates a good movement of material at least in the upstream parts of the upper reach. The lower reach riffle sections still exhibits a small particle size making up the riffle section. As the lower reach was constructed as an offline segment, these values are not unexpected. It will take longer for coarser material to progress to the lower reach from upstream areas. Also, back water effects from Coddle Creek may play a role in the type of bed material for the lower reach. Since the cross section dimensions have remained relatively the same for the lower reach, the sections are stable despite the smaller bed material.

2.1.5 Sediment Transport

Shear stress values calculated from Year 1 riffle data and average slope remain within acceptable values when compared to the design and baseline. As the average channel slopes and cross section dimensions remained relatively unchanged, the shear stress values fall within acceptable ranges.

2.1.6 Photo Documentation

Photos were taken at the 23 stream photo stations and 11 vegetation plots on May 29 and 30, 2012. The locations of the photos stations and vegetation plots are noted on Figure 2 in Appendix B. The photos for monitoring year 1 are also provided in Appendix B.

2.2 Vegetation

The Carolina Vegetation Survey (CVS) Protocol Level 2 methodology was used to sample vegetation on May 29 and 30, 2012. Monitoring was conducted on eleven vegetation plots (6 on the upper reach and 5 on the lower reach). The 100-square meter CVS plots are permanently marked with galvanized metal pipe. The plots occur within the floodplain/riparian area with a few running upslope slightly.

According to the data collected, the average plant density among the 11 plots is 769 stems/acre with the range from 1,174 to 445 stems/acre. The highest plant density occurred in plot 1 with over 1,000 stems/acre. The two plots which did not meet the planting baseline of 680 planted stems/acre last year, plots 7 and 11, have the lowest density/acre. This was a result of the impact by off road vehicle vandalism shortly after planting. There were no signs of this type of vandalism during this monitoring event. Currently, all plots are meeting the interim 3-year vegetation success criteria of 320 stems/acre. Year 1 monitoring data is provided in Appendix C.

2.3 Hydrology

No groundwater monitoring gauges were installed onsite; however, a crest gauge was installed and evidence of a bankfull event was noted at the gauge as well as wrack lines noted in the floodplain.

3.0 REFERENCES

HDR Engineering, Inc. 2007. Final Stream Restoration Plan for Indian Run (Trib. to Coddle Creek).

HDR Engineering, Inc. 2009. Indian Run Stream Restoration Final Plans (90%).

HDR Engineering, Inc. 2011. Baseline Monitoring and As Built Baseline Report.

Lee, Michael T., R. K. Peet, S. D. Roberts, and T. R. Wentworth. 2006. CVS-EEP Protocol for Recording Vegetation. Version 4.0. (http://cvs.bio.unc.edu/methods.htm.)

North Carolina Ecosystem Enhancement Program. 2011. Procedure Guidance and Content Requirements for EEP Monitoring Reports. Version 1.4 (http://www.nceep.net/business/EEP Mon Rep Temp 1.3 01-15-10.pdf)

U.S. Army Corps of Engineers, Wilmington District. 2003. Stream Mitigation Guidelines. North Carolina Division of Water Quality (DWQ), U.S. Environmental Protection Agency, Region IV (EPA), Natural Resources Conservation Service (NRCS) and the North Carolina Wildlife Resources Commission (WRC).

Appendix A. Project Vicinity Maps and Background Tables

Figure 1 – Restoration Site Vicinity

Figure 2 – USGS Concord SE Quad

Table 1a – Project Components

Table 1b – Component Summations

Table 2 – Project Activity and Reporting History

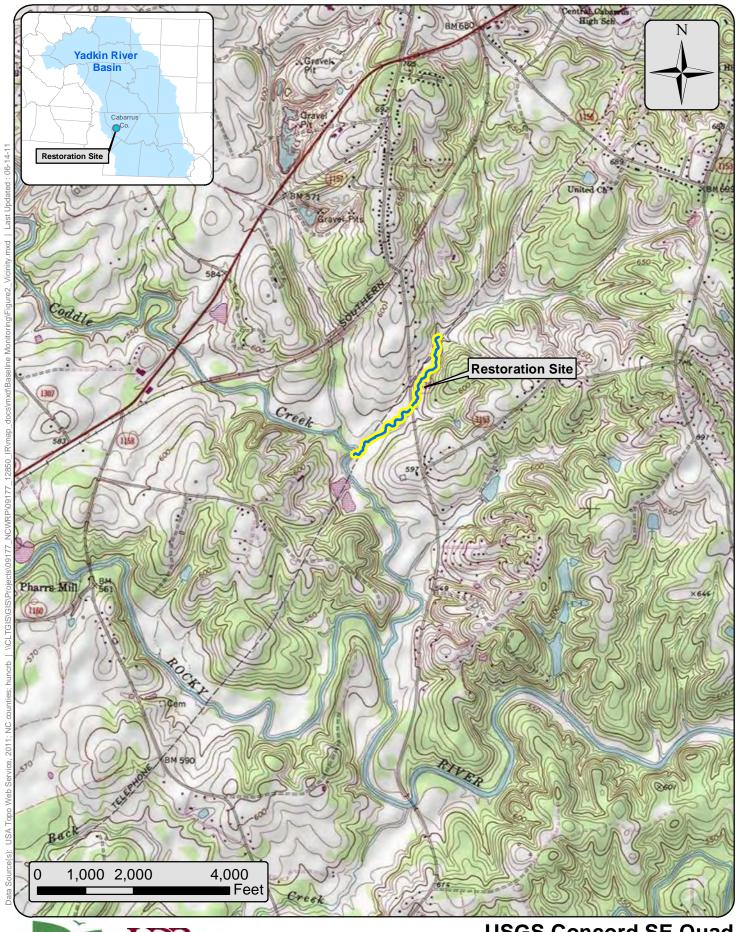

Table 3 – Project Contacts

Table 4 – Project Attributes

ONE COMPANY | Many Solutions =

Restoration Site Vicinity
Figure 1

ONE COMPANY | Many Solutions

USGS Concord SE Quad Figure 2

	Table 1a. Project Components										
				Coddl	e Creek Tribu	ıtary (Indian R	lun) / 94				
Project Component or Reach ID	Existing Feet/Acres	Restoration Level	Approach	Footage or Acreage	Stationing	Mitigation Ratio	Mitigation Units	BMP Elements	Comment		
Reach 1 - Upper	1330 lf	E (Level 1)	P3	1295 lf	15+00 -27+95	1.5:1	863		Restored bankfull dimension within the existing channel, utilized a partial floodplain bench to restore floodprone conditions, and enhanced existing pattern and profile.		
Reach 1 - Upper	671 lf	Р		455 lf	8+29 – 15+00	5:1	91		Preserved channel in its existing condition within the conservation easement. Utility line easements have been removed from Mitigation Units.		
Reach 2 - Lower	735 lf	R	P2	975 lf	10+00 – 19+75	1:1	975		Fully restored pattern, dimension and profile, excavated a new channel within an adjoining floodplain bench to restore floodplain conditions.		
Reach 2 - Lower	915 lf	Р		397 lf	19+75 – 28+06	5:1	79		Preserved channel in its existing condition within the conservation easement. Utility line easements have been removed from Mitigation Units.		

	Table 1b. Component Summations Coddle Creek Tributary (Indian Run) / 94											
		Stream	Riparian W	etland (Ac)		Potential	Total Conservati					
Restoration Level	Stream (If)	Mitigation Units (If)	Riverine	Non- Riverine	Planted Area (Ac)	Buffer Area (Ac)	on Area (Ac)	ВМР				
Restoration (Lower)	975	975			4.21	2.58	10.11					
Enhancement (Upper)	1295	863			4.30	3.59	9.50					
Preservation	852	170				1.89						
(Feet/Acres)	3,122	2,008			8.51	8.06	19.61					

Table 2. Project Activity and Reporting History Coddle Creek Tributary (Indian Run) / 94

Elapsed Time Since Grading Complete: 1 yrs 3 months Elapsed Time Since Planting Complete: 1 yrs 3 Months

Number of Reporting Years: 1

	Data Collection	Completion or
Activity or Deliverable	Complete	Delivery
Restoration Plan	Jun-07	Aug-07
Final Design – Construction Plans	Jun-07	Jul-09
Construction/Grading	NA	Mar-11
Planting	NA	Mar-11
Final Inspection	NA	Mar-11
Monitoring – baseline)	May-11	Aug-11
Year 1 Monitoring	5/29/2012 - 5/30/2012	Sep-12
Year 2 Monitoring		
Year 3 Monitoring		
Year 4 Monitoring		
Year 5 Monitoring		

	Table 3. Project Contacts Table
	Coddle Creek Tributary (Indian Run) / 94
Designer	HDR Engineering Inc. of the Carolinas
	3733 National Drive, Suite 207, Raleigh, NC 27612
Primary project design POC	Jonathan Henderson, PE (919) 785-1118
Construction Contractor	Land Mechanic Designs, Inc.
	126 Circle G Lane, Willow Spring, NC 27592
Construction contractor POC	Lloyd Glover, (919) 639-6132
Survey Contractor	Stewart Proctor Plic
	319 Chapanoke Road #106, Raleigh, NC 27603
Survey contractor POC	Herb Proctor, (919) 799-1855
Planting Contractor	HARP, Inc.
	301 McCullough Drive, 4th Floor, Charlotte, NC 28262
Planting contractor POC	Alan Peoples, (704) 841-2841
Seeding Contractor	Land Mechanic Designs, Inc.
	126 Circle G Lane, Willow Spring, NC 27592
Contractor point of contact	Lloyd Glover, (919) 639-6132
Seed Mix Sources	Green Resource, Charlotte, NC
	Phone: (704) 927-3100
Nursery Stock Suppliers	Cure Nursery, Pittsboro, NC - (919) 542-6186
	ArborGen, Blenheim, SC - (843) 528-3203
	Foggy Mountain Nursery Ilc, Creston, NC - (336) 384-5323
	Habitat and Restoration Plants, Lexington, NC - (336) 362-6776
	NC Division of Forest Resources, Greensboro, NC - (919) 731-7988
Monitoring Performers - Baseline & Year 1	HDR Engineering Inc. of the Carolinas
	3733 National Drive, Suite 207, Raleigh, NC 27612
Stream Monitoring POC	Wyatt Yelverton, PE (919) 232-6623
Vegetation Monitoring POC	Vickie Miller, AICP, PWS (919) 232-6637

Table 4 Pro	oject Attribute Table					
	ibutary (Indian Run) / 94					
Project County	Cabarrus					
Physiographic Region	Piedmont					
Ecoregion	Southern Outer Piedmont					
Project River Basin	Yadkin / Pee Dee					
USGS HUC for Project (14 digit)	3040105020010					
NCDWQ Sub-basin for Project	03 - 07 - 11					
Within extent of EEP Watershed Plan?	Upper Rocky River					
WRC Hab Class (Warm, Cool, Cold)	Warm					
% of project easement fenced or demarcated	100% marked with EEP easement	signage				
Beaver activity observed during design phase?	No					
Restoration Co	mponent Attribute Table					
	UPPER	LOWER				
Drainage area (ac)	1.	.5				
Stream order	2r	nd				
Restored length (feet)	1295	975				
Perennial or Intermittent	P	er				
Watershed type (Rural, Urban, Developing etc.)	De	vel.				
Watershed LULC Distribution (e.g.)						
Medium Density Residential	11					
Low Density Residential / Open Fields/ Lawns	34					
Forested	52					
Watershed impervious cover (%)	3					
NCDWQ AU/Index number						
NCDWQ classification	(
303d listed?	N	0				
Upstream of a 303d listed segment?		es 				
Reasons for 303d listing or stressor	Bio. Integ.	Turbidity				
Total acreage of easement	9.5	10.11				
Total vegetated acreage within the easement	9.5	10.11				
Total planted acreage as part of the restoration	4.3	4.21				
Rosgen classification of pre-existing	Imp. C4	Ditch				
Rosgen classification of As-built	C4	C4				
Valley type	VIII	VIII				
Valley slope Valley side slope range (e.g. 2-3.%)	0.63%	0.61%				
, , , , , ,						
Valley toe slope range (e.g. 2-3.%) Cowardin classification	-	-				
Cowardin classification Trout waters designation		A				
Species of concern, endangered etc.? (Y/N)		0				
Dominant soil series and characteristics	N	0				
	Ob	waala				
Series Donth	Chewacla U					
Depth Claus/	U	U				
Clay%	U	U				
K T						
	U	U				

Appendix B. Visual Assessment

Figure 3a – Current Condition Plan View – Upper Reach

Figure 3b – Current Condition Plan View – Lower Reach

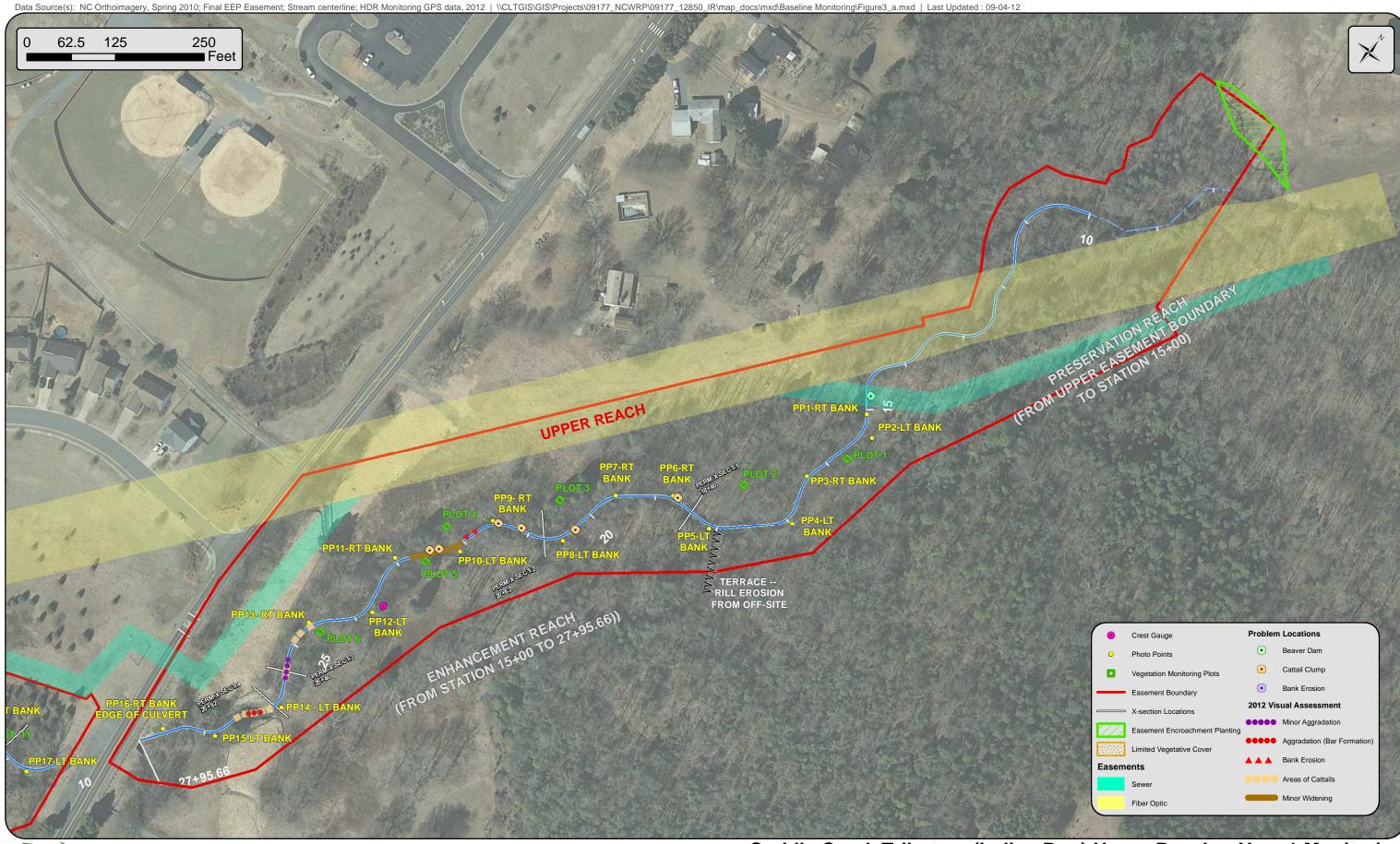

Table 5a – Visual Stream Morphology Stability Assessment – Upper Reach

Table 5b – Visual Stream Morphology Stability Assessment – Lower Reach

Table 6 – Vegetation Condition Assessment

Photos – Permanent Photo Points

Photos – Vegetation Plots

ONE COMPANY | Many Solutions **

Coddle Creek Tributary (Indian Run) Lower Reach -- Year 1 Monitoring

Table 5a Visual Stream Morphology Stability Assessment
Reach ID Upper Reach
Assessed Length 1295

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			1	25	98%			
	(rumo ana rian anito)	Degradation - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	11	11			100%			
	3. Meander Pool Condition	1. Depth Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	14	15			93%			
		2. <u>Length</u> appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	14	15			93%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	15	15			100%			
		2. Thalweg centering at downstream of meander (Glide)	15	15			100%			
	1	Double leading reportation across was disconstituted from the product of the prod								
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			1	25	99%	1	5	99%
				Totals	1	25	99%	1	5	99%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	14	14			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	8	8			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	14	14			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	13	13			100%			
	4. Habitat	Pool forming structures maintaining \sim Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	12	13			92%			

Table 5b
Reach ID
Assessed Length

Visual Stream Morphology Stability Assessment
Lower Reach
975

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	•	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			1	25	97%			
	(Tillie and Tull units)	Degradation - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	6	6			100%	1		
	3. Meander Pool Condition	1. Depth Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	6	7			86%			
		2. <u>Length</u> appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	7	7			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	7	7			100%			
		2. Thalweg centering at downstream of meander (Glide)	7	7			100%			
	•							•	•	
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	9	9			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	5	5			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	9	9			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	9	9			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	8	9			89%			

^{*}Riffles were not supplied with coarse substrate in the as-built condition. Aside from minor aggradation, riffles remain stable.

Cells for data entry are accessible, all others are protected (without a password). If access is needed for any reason go to the 'Tools' menu and choose 'Protection' and then choose 'Unprotect Sheet'

Table 6 <u>Vegetation Condition Assessment</u>

Planted Acreage¹ 8.51

Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
1. Bare Areas	Very limited cover of both woody and herbaceous material.	0.027	Pattern and Color	1	0.03	0.3%
2. Low Stem Density Areas	Woody stem densities clearly below target levels based on MY3, 4, or 5 stem count criteria.	0	Pattern and Color	0	0.00	0.0%
			Total	1	0.03	0.3%
3. Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year.	0	Pattern and Color	0	0.00	0.0%
	Cumulative Total					

Easement Acreage² 19.61

Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
4. Invasive Areas of Concern ⁴	Areas or points (if too small to render as polygons at map scale).	0	Pattern and Color	0	0.00	0.0%
5. Easement Encroachment Areas ³	Areas or points (if too small to render as polygons at map scale).	none	Pattern and Color	0	0.00	0.0%

- 1 = Enter the planted acreage within the easement. This number is calculated as the easement acreage minus any existing mature tree stands that were not subject to supplemental planting of the understory, the channel acreage, crossings or any other elements not directly planted as part of the project effort.
- 2 = The acreage within the easement boundaries.
- 3 = Encroachment may occur within or outside of planted areas and will therefore be calculated against the overall easement acreage. In the event a polygon is cataloged into items 1, 2 or 3 in the table and is the result of encroachment, the associated acreage should be tallied in the relevant item (i.e., item 1,2 or 3) as well as a parallel tally in item 5.
- 4 = Invasives may occur in or out of planted areas, but still within the easement and will therefore be calculated against the overall easement acreage. Invasives of concern/interest are listed below. The list of high concern spcies are those with the potential to directly outcompete native, young, woody stems in the short-term (e.g. monitoring period or shortly thereafter) or affect the community structure for existing, more established tree/shrub stands over timeframes that are slightly longer (e.g. 1-2 decades). The low/moderate concern group are those species that generally do not have this capacity over the timeframes discussed and therefore are not expected to be mapped with regularity, but can be mapped, if in the judgement of the observer their coverage, density or distribution is suppressing the viability, density, or growth of planted woody stems. Decisions as to whether remediation will be needed are based on the integration of risk factors by EEP such as species present, their coverage, distribution relative to native biomass, and the practicality of treatment. For example, even modest amounts of Kudzu or Japanese Knotweed early in the projects history will warrant control, but potentially large coverages of Microstegium in the herb layer will not likley trigger control because of the limited capacities to impact tree/shrub layers within the timeframes discussed and the potential impacts of treating extensive amounts of ground cover. Those species with the "watch list" designator in gray shade are of interest as well, but have yet to be observed across the state with any frequency. Those in red italics are of particular interest given their extreme risk/threat level for mapping as points where isolated specimens are found, particularly early in a projects monitoring history. However, areas of discreet, dense patches will of course be mapped as polygons. The symbology scheme below was one that was found to be helpful for symbolzing invasives polygons, particularly for situations where the condition f

Photo Station 1 Downstream (5/30/2012 Year 1)

Photo Station 1 Upstream (5/30/2012 Year 1)

Photo Station 2 Downstream (5/30/2012 Year 1)

Photo Station 2 Upstream (5/30/2012 Year 1)

Photo Station 3 Downstream (5/30/2012 Year 1)

Photo Station 3 Upstream (5/30/2012 Year 1)

Photo Station 4 Downstream (5/30/2012 Year 1)

Photo Station 4 Upstream (5/30/2012 Year 1)

Photo Station 5 Downstream (5/30/2012 Year 1)

Photo Station 5 Upstream (5/30/2012 Year 1)

Photo Station 6 Downstream (5/30/2012 Year 1)

Photo Station 6 Upstream (5/30/2012 Year 1)

Photo Station 7 Downstream (5/30/2012 Year 1)

Photo Station 7 Upstream (5/30/2012 Year 1)

Photo Station 8 Downstream (5/30/2012 Year 1)

Photo Station 8 Upstream (5/30/2012 Year 1)

Photo Station 9 Downstream (5/30/2012 Year 1)

Photo Station 9 Upstream (5/30/2012 Year 1)

Photo Station 10 Downstream (5/30/2012 Year 1)

Photo Station 10 Upstream (5/30/2012 Year 1)

Photo Station 11 Downstream (5/30/2012 Year 1)

Photo Station 11 Upstream (5/30/2012 Year 1)

Photo Station 12 Downstream (5/30/2012 Year 1)

Photo Station 12 Upstream (5/30/2012 Year 1)

Photo Station 13 Downstream (5/30/2012 Year 1)

Photo Station 13 Upstream (5/30/2012 Year 1)

Photo Station 14 Downstream (5/30/2012 Year 1)

Photo Station 14 Upstream (5/30/2012 Year 1)

Photo Station 15 Downstream (5/30/2012 Year 1)

Photo Station 15 Upstream (5/30/2012 Year 1)

Photo Station 16 Downstream (5/30/2012 Year 1)

Photo Station 16 Upstream (5/30/2012 Year 1)

Photo Station 17 Downstream (5/30/2012 Year 1)

Photo Station 17 Upstream (5/30/2012 Year 1)

Photo Station 18 Downstream (5/30/2012 Year 1)

Photo Station 18 Upstream (5/30/2012 Year 1)

Photo Station 19 Downstream (5/30/2012 Year 1)

Photo Station 19 Upstream (5/30/2012 Year 1)

Photo Station 20 Downstream (5/30/2012 Year 1)

Photo Station 20 Upstream (5/30/2012 Year 1)

Photo Station 21 Downstream (5/30/2012 Year 1)

Photo Station 21 Upstream (5/30/2012 Year 1)

Photo Station 22 Downstream (5/30/2012 Year 1)

Photo Station 22 Upstream (5/30/2012 Year 1)

Photo Station 23 Downstream (5/30/2012 Year 1)

Photo Station 23 Upstream (5/30/2012 Year 1)

Vegetation Plot 1 – 5mx20m (5/29/2012 Year 1 of 5)

Vegetation Plot 2 – 10mx10m (5/29/2012 Year 1 of 5)

Vegetation Plot 3 – 10mx10m (5/29/2012 Year 1 of 5)

Vegetation Plot 4 – 5mx20m (5/29/2012 Year 1 of 5)

Vegetation Plot 5 – 5mx20m (5/29/2012 Year 1 of 5)

Vegetation Plot 6 – 10mx10m (5/29/2012 Year 1 of 5)

Vegetation Plot 7 – 10mx10m (5/30/2012 Year 1 of 5)

Vegetation Plot 8 – 10mx10m (5/30/2012 Year 1 of 5)

Vegetation Plot 9 – 10mx10m (5/30/2012 Year 1 of 5)

Vegetation Plot 10 – 10mx10m (5/30/2012 Year 1 of 5)

Vegetation Plot 11 – 10mx10m (5/30/2012 Year 1 of 5)

Appendix C. Vegetation Plot Data

Table 7 – Vegetation Plot Mitigation Success Summary

Table 8 – CVS Vegetation Metadata

Table 9 – Vegetation Plot Data

Table 7. Vegetation Plot Mitigation Success Summary						
Coddle Creek Tributary (Indian Run) / 94						
Plot	Planted Stems/Ac	Meeting Criteria				
094-HDR-0001-year:2012	1174	Yes				
094-HDR-0002-year:2012	809	Yes				
094-HDR-0003-year:2012	850	Yes				
094-HDR-0004-year:2012	850	Yes				
094-HDR-0005-year:2012	809	Yes				
094-HDR-0006-year:2012	850	Yes				
094-HDR-0007-year:2012	445	Yes				
094-HDR-0008-year:2012	647	Yes				
094-HDR-0009-year:2012	647	Yes				
094-HDR-0010-year:2012	850	Yes				
094-HDR-0011-year:2012	526	Yes				

Table 8. CVS Vegetation Metadata Coddle Creek Tributary (Indian Run) / 94

Report Prepared By Date PreparedVickie Miller
7/11/2012 13:11

database name cvs-eep-entrytool-v2.2.7_2012.mdb

database location R:\EEP-WRP\Indian Run\Monitoring\2012 Monitoring\VegetationMonitoring

computer name RAL-0982400 file size 39264256

DESCRIPTION OF WORKSHEETS IN THIS DOCUMENT------

MetadataDescription of database file, the report worksheets, and a summary of project(s) and project data.Proj, plantedEach project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.

Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems,

Proj, total stems and all natural/volunteer stems.

PlotsList of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).

Vigor Frequency distribution of vigor classes for stems for all plots.

Vigor by Spp Frequency distribution of vigor classes listed by species.

DamageList of most frequent damage classes with number of occurrences and percent of total stems impacted by each.

Damage by Spp Damage values tallied by type for each species.

Damage by Plot Damage values tallied by type for each plot.

Planted Stems by Plot and Spp excluded.

A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each

ALL Stems by Plot and spp plot; dead and missing stems are excluded.

PROJECT SUMMARY-----

Project Code 94

project Name Indian Run Tributary to Coddle Creek

DescriptionStream RestorationRiver BasinYadkin-Pee Dee

length(ft) 2270
stream-to-edge width (ft) 100
area (sq m) 42173.71
Required Plots (calculated) 11
Sampled Plots 0

	Table 9. Vegetation Plot Data																								
	Coddle Creek Tributary (Indian Run) / 94																								
		Total Stems	Total Planted Stems		094-HDR-0001-year:2012		094-HDR-0002-year:2012		094-HDR-0003-year:2012 ;		094-HDR-0004-year:2012		094-HDR-0005-year:2012		094-HDR-0006-year:2012		094-HDK-000 /-year:2012		094-HDR-0008-year:2012 :		094-HDR-0009-year:2012		094-HDR-0010-year:2012		094-HDR-0011-year:2012 :
Species	Common Name		ρĹ	Р	V	Р	V	Р	V	Р	V	Р	V	Р	V	Р	V	Р	٧	Р	V	Р	V	Р	V
Acer negundo	boxelder	9	0												5		2		2						
Acer rubrum	red maple	36	28	11		3	2	4				5		4	6									1	
Alnus serrulata	hazel alder	21	21	5						2		5		2		5				1		1			
Betula nigra	river birch	674	20		651							3		3						4	3	3		7	
Callicarpa americana	American beautyberry	7	7			2				3		1		1											
Calycanthus floridus	eastern sweetshrub	1	1					1																	
Celtis laevigata	sugarberry	10	10											1		1		6		2					
Cornus amomum	silky dogwood	34	34	1		4				8				4		4		5		6		1		1	
Diospyros virginiana	common persimmon	18	18	1		4		4				1		1						3		4			
Fraxinus pennsylvanica	green ash	21	21	6		4		7		2		2													
Juglans nigra	black walnut	5	5					1		3				1											
Liquidambar styraciflua	sweetgum	9	0						5				2		2										
Platanus occidentalis	American sycamore	1536	0				315		95		1000		118		8										
Populus deltoides	eastern cottonwood	662	0		48		25		4		18		13		5		119		174		195		59		2
Quercus nigra	water oak	8	8					2				1		1								3		1	
Quercus phellos	willow oak	21	21	4		3		2		3		1		1				4						3	
Salix nigra	black willow	18	13									1		1		1		1				9			5
Sambucus canadensis	common elderberry	2	2	1										1											
Ulmus sp.	elm	33	0								21		7		5										
	Stem Count	3125	209																						
		Spec	ies Count	29	699	20	342	21	104	21	1039	20	140	21	31	11	121	16	176	16	198	21	59	13	7
	PI	anted Ste	ms / acre	1	174	8	309	8	50	3	350	8	09	3	350	4	45	6	647	6	47	3	50	5	526
		То	tal Stems	7	'28	3	362	1	25	1	060	1	60		52	1	32	1	92	2	14		80		20
		Total Ste	ms / acre	29	1461	14	1650	5	059	42	2897	64	475	2	104	5	342	7	770	80	660	3	237	8	309

^{*}P – Planted, V – Volunteer

Appendix D. Stream Survey Data

Cross-Sections with Annual Overlays

Longitudinal Profiles with Annual Overlays

Pebble Counts with Annual Overlays

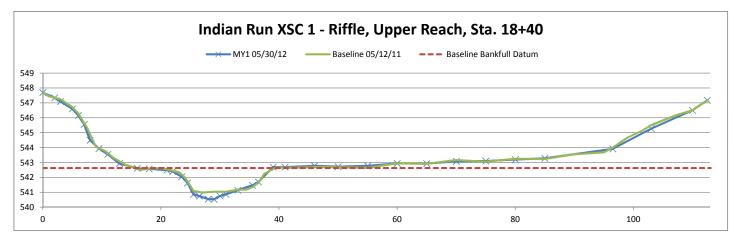
Table 10a – Baseline Stream Data Summary – Upper Reach

Table 10b – Baseline Stream Data Summary – Lower Reach

Table 11a – Monitoring Data – Dimensional Morphology Summary

Table 11b - Monitoring Data - Stream Reach Data Summary - Upper Reach

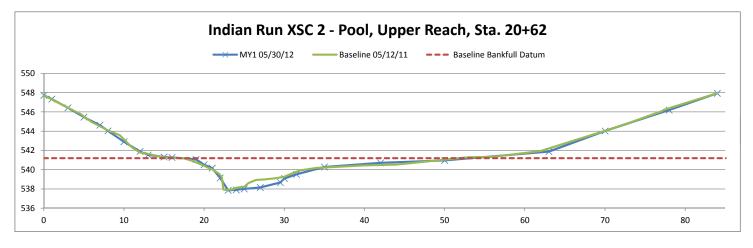
Table 11c - Monitoring Data - Stream Reach Data Summary - Lower Reach


Station	Elevation
0	547.69
2	547.34
3	547.09
5	546.6
6	546.16
7	545.56
8	544.49
9.5	543.93
11	543.55
13	542.93
16	542.61
18	542.57
21	542.48
22	542.4
23.5	542.04
24.5	541.63
25.5	540.85
26.5	540.74
28	540.54
29	540.53
30	540.75
31	540.86
33	541.14
35.5	541.47
36.5	541.69
39	542.69
41	542.69
46	542.78
50	542.72
55	542.77
60	542.94
65	542.93
70	543.08
75	543.1
80	543.19
85	543.28
96.5	543.91
103	545.27
110	546.5
112.5	547.18

Reach	Indian Run, Upper Reach
River Basin	Yadkin / Pee Dee
Cross Section ID	XSC-1, Riffle, Upper Reach, 18+40
Drainage Area (Sq Mi)	1.5
Date	5/29/2012
Observers	V. Miller, C. Myers, W. Yelverton

CLIMANA DV DATA							
SUIVIIV	SUMMARY DATA						
Bankfull Elevation, ft	542.62						
Bankfull Cross Sectional Area, ft ²	22.60						
Bankfull Width, ft	22.90						
Max Depth at Bankfull, ft	2.09						
Mean Depth at Bankfull, ft	0.99						
Width/Depth Ratio	23.20						
Flood Prone Width, ft	92.50						
Flood Prone Area Elevation	544.71						
Entrenchment Ratio	4.04						
Bank Height Ratio	0.98						

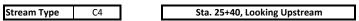
Sta. 18+40 Looking Downstream

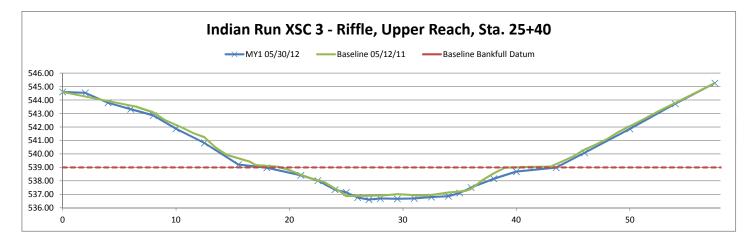

Station	Elevation
0	547.73
1	547.34
3	546.44
5	545.46
7	544.63
8	544.03
10	542.9
12	541.9
13	541.53
15	541.32
16	541.28
19	541.08
20	540.52
21	540.17
22	539.15
23	537.86
24	537.9
25	538
27	538.15
29.5	538.67
30	539.09
31.5	539.52
35	540.28
42	540.71
50	540.96
63	541.88
70	544.02
78	546.2
84	547.95

Reach	Indian Run, Upper Reach
River Basin	Yadkin / Pee Dee
Cross Section ID	XSC-2, Pool, Upper Reach, 20+62
Drainage Area (Sq Mi)	1.5
Date	5/29/2012
Observers	V. Miller, C. Myers, W. Yelverton

SUMIN	SUMMARY DATA					
Bankfull Elevation, ft	541.18					
Bankfull Cross Sectional Area, ft ²	41.46					
Bankfull Width, ft	35.59					
Max Depth at Bankfull, ft	3.32					
Mean Depth at Bankfull, ft	1.16					
Width/Depth Ratio	30.55					
Flood Prone Width, ft	60.70					
Flood Prone Area Elevation	544.50					
Entrenchment Ratio	1.71					
Bank Height Ratio	1.00					

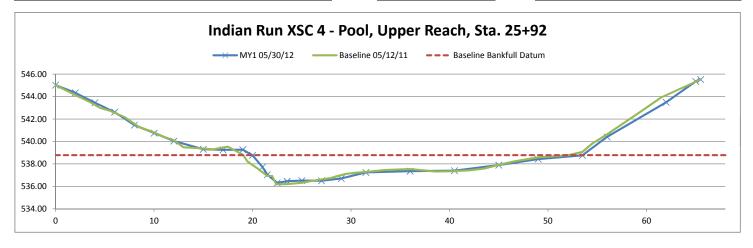
Sta. 20+62 Looking Downstream, foreground




Station	Elevation
0	544.60
2	544.53
4	543.80
6	543.32
8	542.86
10	541.87
12.5	540.81
15.5	539.21
18	538.97
21	538.41
22.5	538.02
24	537.35
25	537.14
26	536.76
27	536.61
28	536.69
29.5	536.67
31	536.69
32.5	536.80
34	536.86
35	537.10
36	537.50
38	538.16
40	538.69
43.5	538.98
46	540.08
50	541.86
54	543.72
57.5	545.26

Reach	Indian Run, Upper Reach
River Basin	Yadkin / Pee Dee
Cross Section ID	XSC-3, Riffle, Upper Reach, 25+40
Drainage Area (Sq Mi)	1.5
Date	5/29/2012
Observers	V. Miller, C. Myers, W. Yelverton

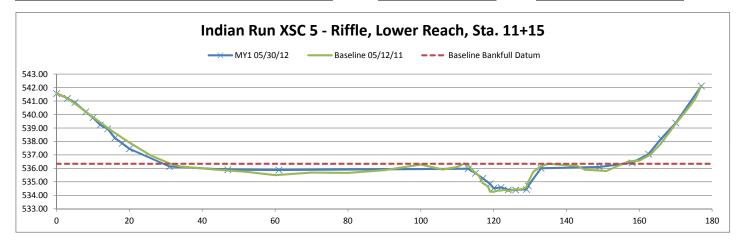
SUMMARY DATA					
Bankfull Elevation, ft	539.00				
Bankfull Cross Sectional Area, ft ²	33.89				
Bankfull Width, ft	25.86				
Max Depth at Bankfull, ft	2.39				
Mean Depth at Bankfull, ft	1.31				
Width/Depth Ratio	19.73				
Flood Prone Width, ft	37.80				
Flood Prone Area Elevation	541.39				
Entrenchment Ratio	1.46				
Bank Height Ratio	1.00				


Station	Elevation
0	545.02
2	544.34
4	543.46
6	542.62
8	541.46
10	540.74
12	540.04
15	539.31
17	539.25
19	539.27
20	538.76
21	537.72
21.5	537.04
22.5	536.31
23.5	536.45
25	536.51
27	536.50
29	536.70
31.5	537.24
36	537.36
40.5	537.40
45	537.89
49	538.43
53.5	538.77
56	540.40
62	543.49
65	545.35
65.5	545.52

Reach	Indian Run, Upper Reach
River Basin	Yadkin / Pee Dee
Cross Section ID	XSC-4, Pool, Upper Reach, 25+92
Drainage Area (Sq Mi)	1.5
Date	5/29/2012
Observers	V. Miller, C. Myers, W. Yelverton

SUMMARY DATA	
Bankfull Elevation, ft	538.77
Bankfull Cross Sectional Area, ft ²	43.72
Bankfull Width, ft	33.51
Max Depth at Bankfull, ft	2.46
Mean Depth at Bankfull, ft	1.30
Width/Depth Ratio	25.68
Flood Prone Width, ft	47.90
Flood Prone Area Elevation	541.23
Entrenchment Ratio	1.43
Bank Height Ratio	1.00

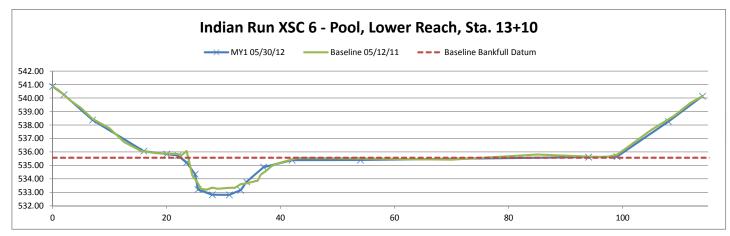
Sta. 25+92 Looking Downstream, foreground


Station	Elevation
0	541.56
3	541.20
5	540.88
8	540.20
10	539.77
12	539.23
14	538.94
16	538.26
18	537.86
20	537.46
31	536.14
47	535.90
61	535.88
113	535.97
115	535.64
117	535.26
119	534.86
120	534.53
122	534.58
124	534.40
126	534.40
129	534.44
129.5	534.70
133	536.01
149	536.11
158	536.41
162.5	537.06
166	538.19
170	539.37
177	542.11

Reach	Indian Run, Lower Reach
River Basin	Yadkin / Pee Dee
Cross Section ID	XSC-5, Riffle, Lower Reach, 11+15
Drainage Area (Sq Mi)	1.5
Date	5/30/2012
Observers	V. Miller, C. Myers, W. Yelverton

SUMMARY DATA	
Bankfull Elevation, ft	536.34
Bankfull Cross Sectional Area, ft ²	27.92
Bankfull Width, ft	19.98
Max Depth at Bankfull, ft	1.94
Mean Depth at Bankfull, ft	1.40
Width/Depth Ratio	14.30
Flood Prone Width, ft	150.10
Flood Prone Area Elevation	538.28
Entrenchment Ratio	7.51
Bank Height Ratio	0.83

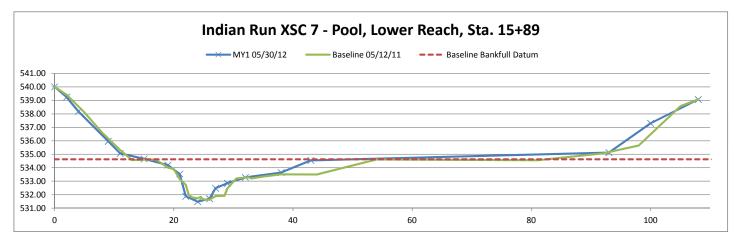
Sta. 11+15 Looking Downstream


Station	Elevation
0	540.86
2	540.25
7	538.37
16	536.06
20	535.84
22	535.73
23.5	535.21
25	534.35
25.5	533.21
28	532.82
31	532.81
33	533.16
34	533.78
37	534.87
42	535.39
54	535.40
94	535.62
99	535.65
108	538.25
114	540.14

Reach	Indian Run, Lower Reach
River Basin	Yadkin / Pee Dee
Cross Section ID	XSC-6, Pool, Lower Reach, 13+10
Drainage Area (Sq Mi)	1.5
Date	5/30/2012
Observers	V. Miller, C. Myers, W. Yelverton

SUMMARY DATA	
Bankfull Elevation, ft	535.56
Bankfull Cross Sectional Area, ft ²	26.71
Bankfull Width, ft	19.03
Max Depth at Bankfull, ft	2.75
Mean Depth at Bankfull, ft	1.40
Width/Depth Ratio	13.56
Flood Prone Width, ft	104.40
Flood Prone Area Elevation	538.31
Entrenchment Ratio	5.49
Bank Height Ratio	0.94

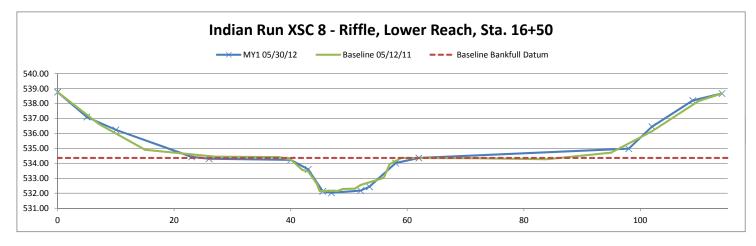
Sta. 13+10 Looking Downstream

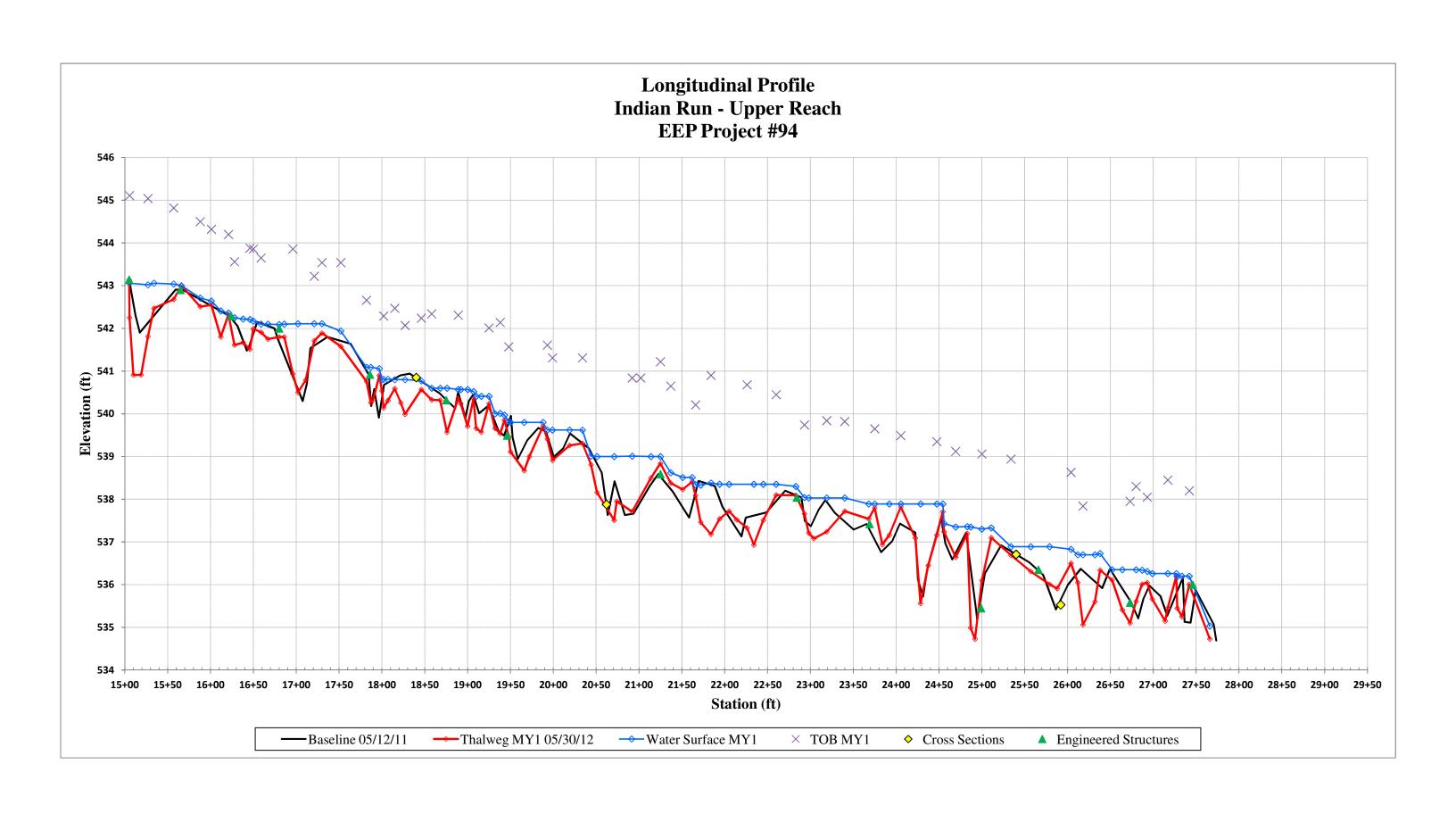

Station	Elevation
0	540.01
2	539.25
4	538.19
9	535.97
11	535.07
15	534.66
19	534.20
21	533.54
22	531.88
24	531.48
26	531.70
27	532.48
29	532.85
32	533.29
38	533.64
43	534.54
93	535.12
100	537.30
108	539.07

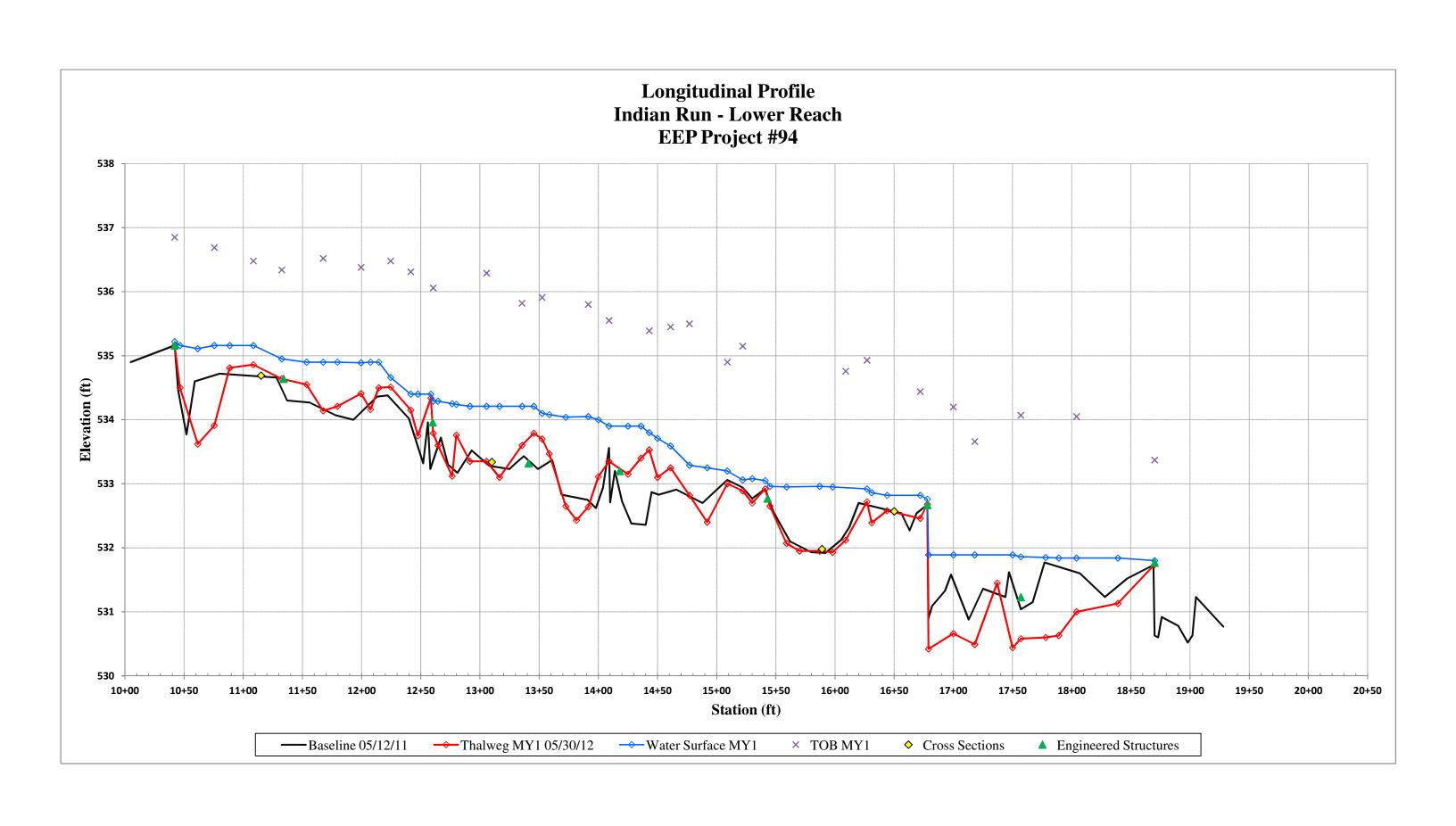
Reach	Indian Run, Lower Reach
River Basin	Yadkin / Pee Dee
Cross Section ID	XSC-7, Pool, Lower Reach, 15+89
Drainage Area (Sq Mi)	1.5
Date	5/30/2012
Observers	V. Miller, C. Myers, W. Yelverton

SUMMARY DATA	
Bankfull Elevation, ft	534.62
Bankfull Cross Sectional Area, ft ²	37.08
Bankfull Width, ft	34.53
Max Depth at Bankfull, ft	3.14
Mean Depth at Bankfull, ft	1.07
Width/Depth Ratio	32.16
Flood Prone Width, ft	99.00
Flood Prone Area Elevation	537.76
Entrenchment Ratio	2.87
Bank Height Ratio	1.00

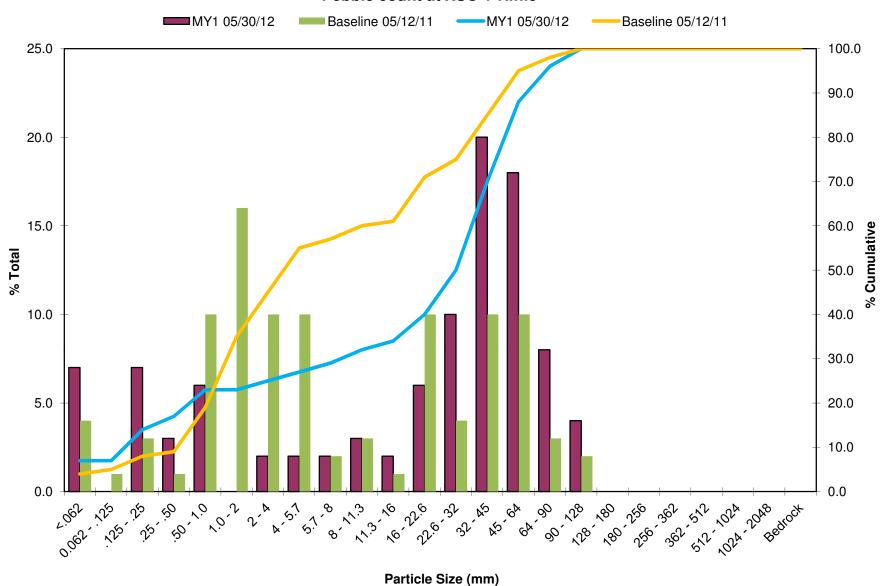
Sta. 15+89 Looking Downstream


Station	Elevation
0	538.76
5	537.10
10	536.24
23	534.43
26	534.31
40	534.23
43	533.60
45.5	532.14
47	532.03
52	532.18
53.5	532.44
58	534.02
62	534.36
98	534.98
102	536.45
109	538.20
114	538.67


Reach	Indian Run, Lower Reach		
River Basin	Yadkin / Pee Dee		
Cross Section ID	XSC-8, Riffle, Lower Reach, 16+50		
Drainage Area (Sq Mi)	1.5		
Date	5/30/2012		
Observers	V. Miller, C. Myers, W. Yelverton		


SUMMARY DATA				
Bankfull Elevation, ft	534.36			
Bankfull Cross Sectional Area, ft ²	28.64			
Bankfull Width, ft	22.02			
Max Depth at Bankfull, ft	2.33			
Mean Depth at Bankfull, ft	1.30			
Width/Depth Ratio	16.93			
Flood Prone Width, ft	95.60			
Flood Prone Area Elevation	536.69			
Entrenchment Ratio	4.34			
Bank Height Ratio	0.94			

Sta. 16+50 Looking Upstream, above log struc.

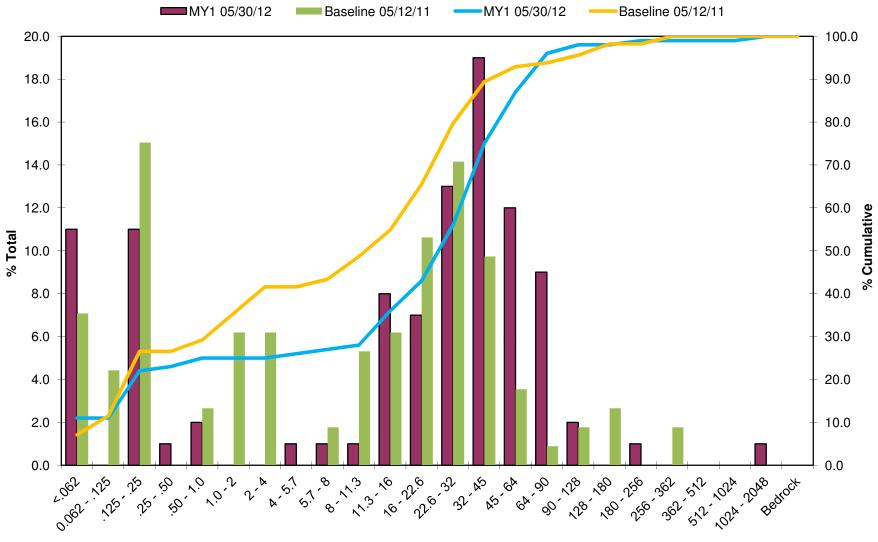

Indian Run - UR XSC-1 Riffle-Pebble Count

Location: STA 18+40

Inches	Particle	Millimeters		Count	%Total	% Cum.
	Silt/Clay	<.062	SILT/CLAY	7	7.0	7.0
	Very Fine	0.062125		0	0.0	7.0
	Fine	.12525	S	7	7.0	14.0
	Medium	.2550	A N	3	3.0	17.0
	Coarse	.50 - 1.0	D	6	6.0	23.0
.0408	Very Coarse	1.0 - 2		0	0.0	23.0
.0816	Very Fine	2 - 4		2	2.0	25.0
.1622	Fine	4 - 5.7		2	2.0	27.0
.2231	Fine	5.7 - 8	G	2	2.0	29.0
.31 .44	Medium	8 - 11.3	R	3	3.0	32.0
.4463	Medium	11.3 - 16	A V	2	2.0	34.0
.6389	Coarse	16 - 22.6	E L	6	6.0	40.0
.89 - 1.26	Coarse	22.6 - 32	L	10	10.0	50.0
1.26 - 1.77	Very Coarse	32 - 45		20	20.0	70.0
1.77 - 2.5	Very Coarse	45 - 64		18	18.0	88.0
2.5 - 3.5	Small	64 - 90	С	8	8.0	96.0
3.5 - 5.0	Small	90 - 128	O B	4	4.0	100.0
5.0 - 7.1	Large	128 - 180	B L	0	0.0	100.0
7.1 - 10.1	Large	180 - 256	E	0	0.0	100.0
10.1 - 14.3	Small	256 - 362	В	0	0.0	100.0
14.3 - 20	Small	362 - 512	Ü	0	0.0	100.0
20 - 40	Medium	512 - 1024	L D	0	0.0	100.0
40 - 80	Large - Very Lg	1024 - 2048	E R	0	0.0	100.0
	Bedrock	Bedrock		0	0.0	100.0
	Total Counted 100					

Summary Data		
D50	32	
D84	59	
D95	86	

Pebble count at XSC-1-Riffle


Indian Run -UR - XSC-2 Pool Pebble Count

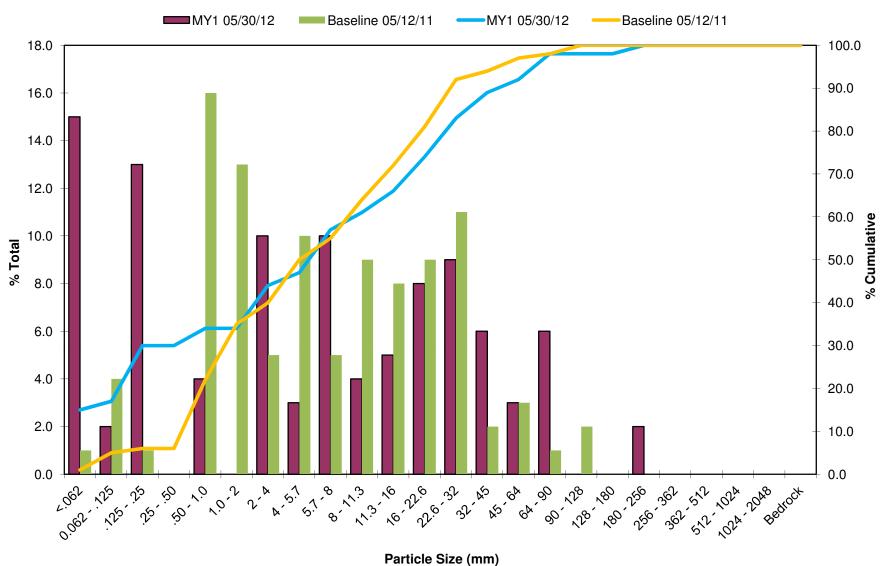
Location: STA 20+62

Inches	Particle	Millimeters		Count	%Total	% Cum.
	Silt/Clay	<.062	SILT/CLAY	11	11.0	11.0
	Very Fine	0.062125		0	0.0	11.0
	Fine	.12525	S	11	11.0	22.0
	Medium	.2550	A N	1	1.0	23.0
	Coarse	.50 - 1.0	D	2	2.0	25.0
.0408	Very Coarse	1.0 - 2		0	0.0	25.0
.0816	Very Fine	2 - 4		0	0.0	25.0
.1622	Fine	4 - 5.7		1	1.0	26.0
.2231	Fine	5.7 - 8	G	1	1.0	27.0
.31 .44	Medium	8 - 11.3	R	1	1.0	28.0
.4463	Medium	11.3 - 16	A V	8	8.0	36.0
.6389	Coarse	16 - 22.6	E L	7	7.0	43.0
.89 - 1.26	Coarse	22.6 - 32	_	13	13.0	56.0
1.26 - 1.77	Very Coarse	32 - 45		19	19.0	75.0
1.77 - 2.5	Very Coarse	45 - 64		12	12.0	87.0
2.5 - 3.5	Small	64 - 90	С	9	9.0	96.0
3.5 - 5.0	Small	90 - 128	O B	2	2.0	98.0
5.0 - 7.1	Large	128 - 180	B L	0	0.0	98.0
7.1 - 10.1	Large	180 - 256	E	1	1.0	99.0
10.1 - 14.3	Small	256 - 362	В	0	0.0	99.0
14.3 - 20	Small	362 - 512	Ü	0	0.0	99.0
20 - 40	Medium	512 - 1024	D L	0	0.0	99.0
40 - 80	Large - Very Lg	1024 - 2048	E R	1	1.0	100.0
	Bedrock	Bedrock		0	0.0	100.0
Total Counted 100						

Summary Data		
D50	27	
D84	59	
D95 87		

Pebble count at XSC-2-Pool

Particle Size (mm)

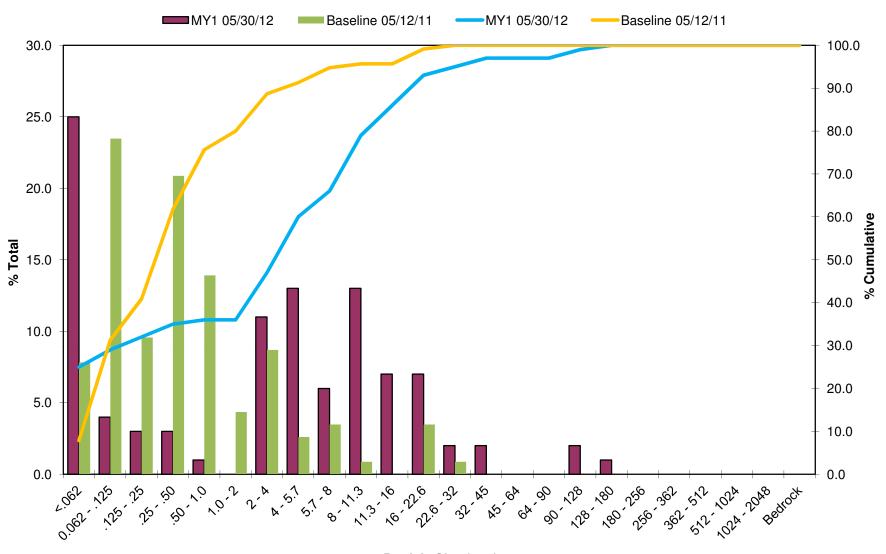

Indian Run -UR - XSC-3 Riffle Pebble Count

Location: STA 25+40

Inches	Particle	Millimeters		Count	%Total	% Cum.
	Silt/Clay	<.062	SILT/CLAY	15	15.0	15.0
	Very Fine	0.062125		2	2.0	17.0
	Fine	.12525	S	13	13.0	30.0
	Medium	.2550	A N	0	0.0	30.0
	Coarse	.50 - 1.0	D	4	4.0	34.0
.0408	Very Coarse	1.0 - 2		0	0.0	34.0
.0816	Very Fine	2 - 4		10	10.0	44.0
.1622	Fine	4 - 5.7		3	3.0	47.0
.2231	Fine	5.7 - 8	G	10	10.0	57.0
.31 .44	Medium	8 - 11.3	R	4	4.0	61.0
.4463	Medium	11.3 - 16	A V	5	5.0	66.0
.6389	Coarse	16 - 22.6	E L	8	8.0	74.0
.89 - 1.26	Coarse	22.6 - 32	L	9	9.0	83.0
1.26 - 1.77	Very Coarse	32 - 45		6	6.0	89.0
1.77 - 2.5	Very Coarse	45 - 64		3	3.0	92.0
2.5 - 3.5	Small	64 - 90	С	6	6.0	98.0
3.5 - 5.0	Small	90 - 128	O B	0	0.0	98.0
5.0 - 7.1	Large	128 - 180	B L	0	0.0	98.0
7.1 - 10.1	Large	180 - 256	E	2	2.0	100.0
10.1 - 14.3	Small	256 - 362	В	0	0.0	100.0
14.3 - 20	Small	362 - 512	U	0	0.0	100.0
20 - 40	Medium	512 - 1024	L D	0	0.0	100.0
40 - 80	Large - Very Lg	1024 - 2048	E R	0	0.0	100.0
	Bedrock	Bedrock		0	0.0	100.0
Total Counted 100						

Summary Data		
D50	6.5	
D84	34	
D95	76	

Pebble count at XSC-3-Riffle


Indian Run -UR - XSC-4 Pool Pebble Count

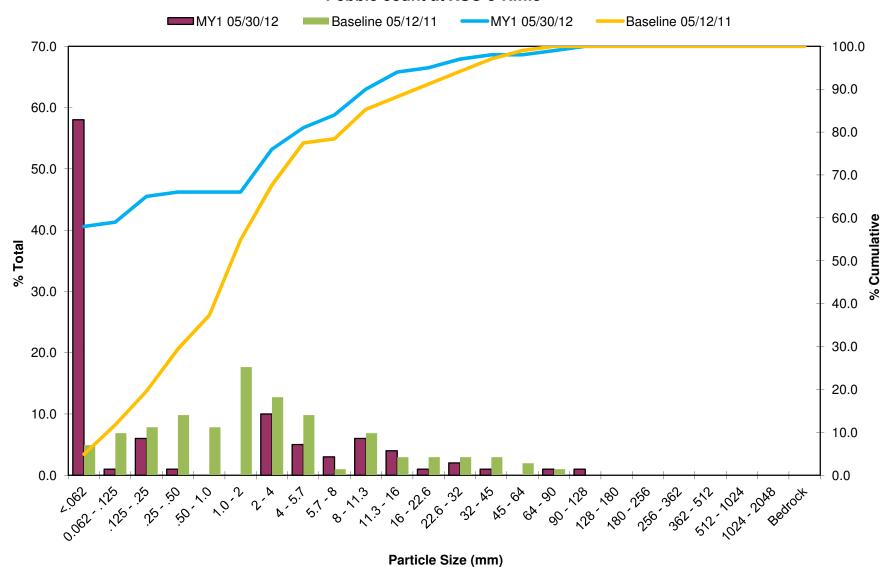
Location: STA 25+92

Inches	Particle	Millimeters		Count	%Total	% Cum.
	Silt/Clay	<.062	SILT/CLAY	25	25.0	25.0
	Very Fine	0.062125		4	4.0	29.0
	Fine	.12525	S	3	3.0	32.0
	Medium	.2550	A N	3	3.0	35.0
	Coarse	.50 - 1.0	D	1	1.0	36.0
.0408	Very Coarse	1.0 - 2		0	0.0	36.0
.0816	Very Fine	2 - 4		11	11.0	47.0
.1622	Fine	4 - 5.7		13	13.0	60.0
.2231	Fine	5.7 - 8	G	6	6.0	66.0
.31 .44	Medium	8 - 11.3	R	13	13.0	79.0
.4463	Medium	11.3 - 16	A V	7	7.0	86.0
.6389	Coarse	16 - 22.6	E L	7	7.0	93.0
.89 - 1.26	Coarse	22.6 - 32	_	2	2.0	95.0
1.26 - 1.77	Very Coarse	32 - 45		2	2.0	97.0
1.77 - 2.5	Very Coarse	45 - 64		0	0.0	97.0
2.5 - 3.5	Small	64 - 90	С	0	0.0	97.0
3.5 - 5.0	Small	90 - 128	O B	2	2.0	99.0
5.0 - 7.1	Large	128 - 180	B L	1	1.0	100.0
7.1 - 10.1	Large	180 - 256	E	0	0.0	100.0
10.1 - 14.3	Small	256 - 362	В	0	0.0	100.0
14.3 - 20	Small	362 - 512	Ü	0	0.0	100.0
20 - 40	Medium	512 - 1024	D L	0	0.0	100.0
40 - 80	Large - Very Lg	1024 - 2048	E R	0	0.0	100.0
	Bedrock	Bedrock		0	0.0	100.0
		Tota	al Counted	100		

Summary Data								
D50	4.4							
D84	14							
D95	32							

Pebble count at XSC-4-Pool

Particle Size (mm)

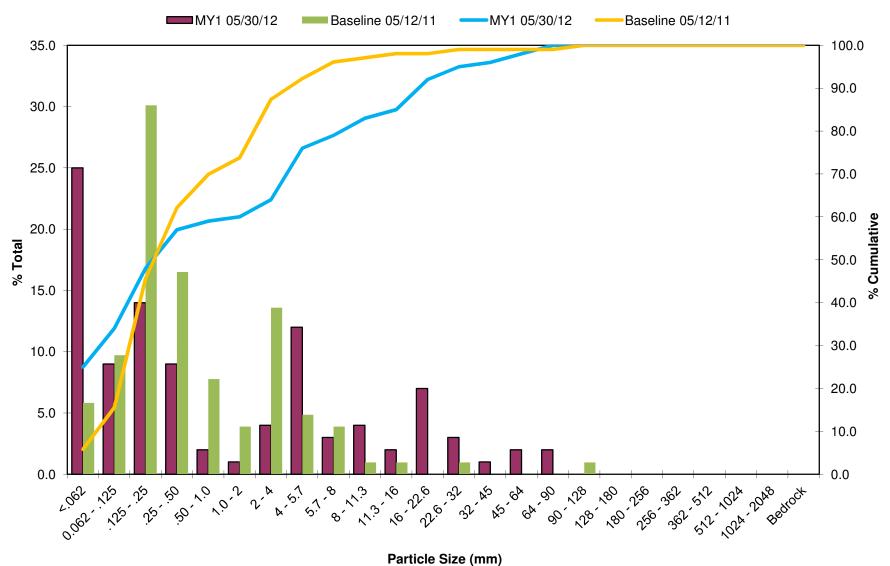

Indian Run -LR - XSC-5 Riffle Pebble Count

Location: STA 11+15

Inches	Particle	Millimeters		Count	%Total	% Cum.
	Silt/Clay	<.062	SILT/CLAY	58	58.0	58.0
	Very Fine	0.062125		1	1.0	59.0
	Fine	.12525	S	6	6.0	65.0
	Medium	.2550	A N	1	1.0	66.0
	Coarse	.50 - 1.0	D	0	0.0	66.0
.0408	Very Coarse	1.0 - 2		0	0.0	66.0
.0816	Very Fine	2 - 4		10	10.0	76.0
.1622	Fine	4 - 5.7		5	5.0	81.0
.2231	Fine	5.7 - 8	G	3	3.0	84.0
.31 .44	Medium	8 - 11.3	R	6	6.0	90.0
.4463	Medium	11.3 - 16	A V	4	4.0	94.0
.6389	Coarse	16 - 22.6	E L	1	1.0	95.0
.89 - 1.26	Coarse	22.6 - 32	_	2	2.0	97.0
1.26 - 1.77	Very Coarse	32 - 45		1	1.0	98.0
1.77 - 2.5	Very Coarse	45 - 64		0	0.0	98.0
2.5 - 3.5	Small	64 - 90	С	1	1.0	99.0
3.5 - 5.0	Small	90 - 128	O B	1	1.0	100.0
5.0 - 7.1	Large	128 - 180	B L	0	0.0	100.0
7.1 - 10.1	Large	180 - 256	E	0	0.0	100.0
10.1 - 14.3	Small	256 - 362	В	0	0.0	100.0
14.3 - 20	Small	362 - 512	U	0	0.0	100.0
20 - 40	Medium	512 - 1024	D D	0	0.0	100.0
40 - 80	Large - Very Lg	1024 - 2048	E R	0	0.0	100.0
	Bedrock	Bedrock		0	0.0	100.0
		Tota	al Counted	100		

Summary Data								
D50	0.062							
D84	8							
D95	22							

Pebble count at XSC-5-Riffle

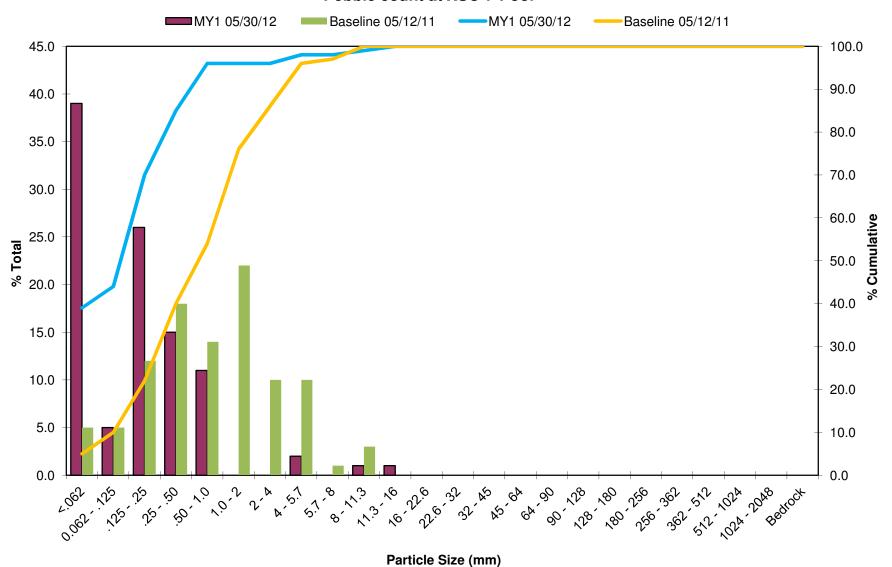

Indian Run -LR - XSC-6 Pool Pebble Count

Location: STA 13+10

Inches	Particle	Millimeters		Count	%Total	% Cum.
	Silt/Clay	<.062	SILT/CLAY	25	25.0	25.0
	Very Fine	0.062125		9	9.0	34.0
	Fine	.12525	S	14	14.0	48.0
	Medium	.2550	A N	9	9.0	57.0
	Coarse	.50 - 1.0	D	2	2.0	59.0
.0408	Very Coarse	1.0 - 2		1	1.0	60.0
.0816	Very Fine	2 - 4		4	4.0	64.0
.1622	Fine	4 - 5.7		12	12.0	76.0
.2231	Fine	5.7 - 8	G	3	3.0	79.0
.31 .44	Medium	8 - 11.3	R	4	4.0	83.0
.4463	Medium	11.3 - 16	A V	2	2.0	85.0
.6389	Coarse	16 - 22.6	E L	7	7.0	92.0
.89 - 1.26	Coarse	22.6 - 32	_	3	3.0	95.0
1.26 - 1.77	Very Coarse	32 - 45		1	1.0	96.0
1.77 - 2.5	Very Coarse	45 - 64		2	2.0	98.0
2.5 - 3.5	Small	64 - 90	С	2	2.0	100.0
3.5 - 5.0	Small	90 - 128	O B	0	0.0	100.0
5.0 - 7.1	Large	128 - 180	B L	0	0.0	100.0
7.1 - 10.1	Large	180 - 256	E	0	0.0	100.0
10.1 - 14.3	Small	256 - 362	В	0	0.0	100.0
14.3 - 20	Small	362 - 512	Ü	0	0.0	100.0
20 - 40	Medium	512 - 1024	D L	0	0.0	100.0
40 - 80	Large - Very Lg	1024 - 2048	E R	0	0.0	100.0
	Bedrock	Bedrock		0	0.0	100.0
		Tota	al Counted	100		

Summary Data								
D50	0.29							
D84	13							
D95	32							

Pebble count at XSC-6-Pool

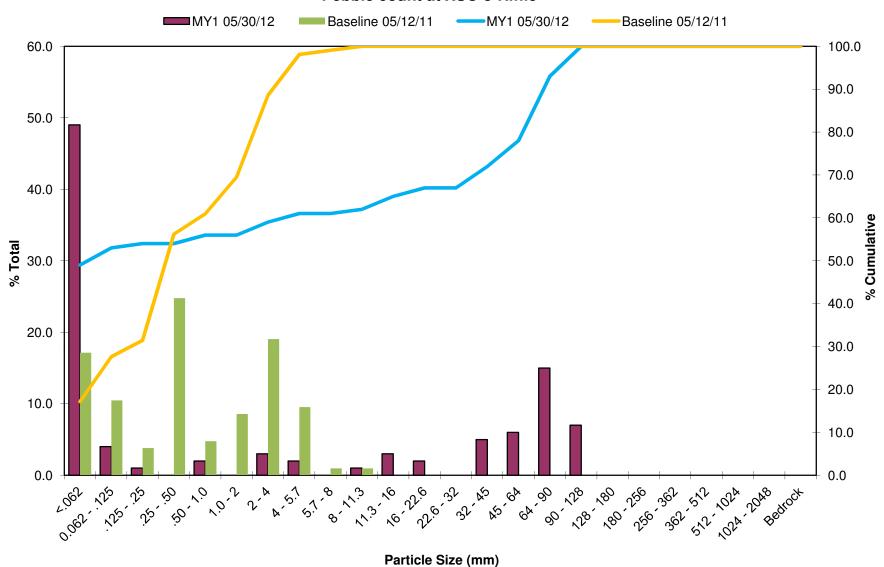

Indian Run -LR - XSC-7 Pool Pebble Count

Location: STA 15+89

Inches	Particle	Millimeters		Count	%Total	% Cum.
	Silt/Clay	<.062	SILT/CLAY	39	39.0	39.0
	Very Fine	0.062125		5	5.0	44.0
	Fine	.12525	S	26	26.0	70.0
	Medium	.2550	A N	15	15.0	85.0
	Coarse	.50 - 1.0	D	11	11.0	96.0
.0408	Very Coarse	1.0 - 2		0	0.0	96.0
.0816	Very Fine	2 - 4		0	0.0	96.0
.1622	Fine	4 - 5.7		2	2.0	98.0
.2231	Fine	5.7 - 8	G	0	0.0	98.0
.31 .44	Medium	8 - 11.3	R	1	1.0	99.0
.4463	Medium	11.3 - 16	A V	1	1.0	100.0
.6389	Coarse	16 - 22.6	E L	0	0.0	100.0
.89 - 1.26	Coarse	22.6 - 32	_	0	0.0	100.0
1.26 - 1.77	Very Coarse	32 - 45		0	0.0	100.0
1.77 - 2.5	Very Coarse	45 - 64		0	0.0	100.0
2.5 - 3.5	Small	64 - 90	С	0	0.0	100.0
3.5 - 5.0	Small	90 - 128	O B	0	0.0	100.0
5.0 - 7.1	Large	128 - 180	B L	0	0.0	100.0
7.1 - 10.1	Large	180 - 256	E	0	0.0	100.0
10.1 - 14.3	Small	256 - 362	В	0	0.0	100.0
14.3 - 20	Small	362 - 512	Ü	0	0.0	100.0
20 - 40	Medium	512 - 1024	D	0	0.0	100.0
40 - 80	Large - Very Lg	1024 - 2048	E R	0	0.0	100.0
	Bedrock	Bedrock		0	0.0	100.0
		Tota	al Counted	100		

Summary Data								
D50	0.15							
D84	0.48							
D95	0.94							

Pebble count at XSC-7-Pool


Indian Run -LR - XSC-8 Riffle Pebble Count

Location: STA 16+50

Inches	Particle	Millimeters		Count	%Total	% Cum.
	Silt/Clay	<.062	SILT/CLAY	49	49.0	49.0
	Very Fine	0.062125		4	4.0	53.0
	Fine	.12525	S	1	1.0	54.0
	Medium	.2550	A N	0	0.0	54.0
	Coarse	.50 - 1.0	D	2	2.0	56.0
.0408	Very Coarse	1.0 - 2		0	0.0	56.0
.0816	Very Fine	2 - 4		3	3.0	59.0
.1622	Fine	4 - 5.7		2	2.0	61.0
.2231	Fine	5.7 - 8	G	0	0.0	61.0
.31 .44	Medium	8 - 11.3	R	1	1.0	62.0
.4463	Medium	11.3 - 16	A V	3	3.0	65.0
.6389	Coarse	16 - 22.6	E L	2	2.0	67.0
.89 - 1.26	Coarse	22.6 - 32	_	0	0.0	67.0
1.26 - 1.77	Very Coarse	32 - 45		5	5.0	72.0
1.77 - 2.5	Very Coarse	45 - 64		6	6.0	78.0
2.5 - 3.5	Small	64 - 90	С	15	15.0	93.0
3.5 - 5.0	Small	90 - 128	O B	7	7.0	100.0
5.0 - 7.1	Large	128 - 180	B L	0	0.0	100.0
7.1 - 10.1	Large	180 - 256	E	0	0.0	100.0
10.1 - 14.3	Small	256 - 362	В	0	0.0	100.0
14.3 - 20	Small	362 - 512	U	0	0.0	100.0
20 - 40	Medium	512 - 1024	D D	0	0.0	100.0
40 - 80	Large - Very Lg	1024 - 2048	E R	0	0.0	100.0
	Bedrock	Bedrock		0	0.0	100.0
		Tota	al Counted	100		

Summary Data								
D50	0.074							
D84	73							
D95	100							

Pebble count at XSC-8-Riffle

				Co	ddle C	reek T					eam Da - Segm				(1295 f	eet)									
Parameter	Gauge ²	Reg	jional C	urve		Pre-	Existin	g Cond	ition			Refere	ence Re	each(es) Data			Design			Мо	nitorin	g Basel	ine	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD ⁵	n	Min	Mean	Med	Max	SD ⁵	n	Min	Med	Max	Min	Mean	Med	Max	SD ⁵	n
Bankfull Width (ft)							20.0				8.0			9.2				20.0		19.3	20.1		20.8		2
Floodprone Width (ft)							53.7				20.0			92.0				35.0		35.4	62.1		88.7		2
Bankfull Mean Depth (ft)							3.1				1.2			1.5				1.6		1.0	1.2		1.4		2
¹ Bankfull Max Depth (ft)							4.6				1.3			1.9				1.8		1.6	1.9		2.1		2
Bankfull Cross Sectional Area (ft²)							61.3				11.3			12.3				29.3		19.9	24.7		29.5		2
Width/Depth Ratio							6.5				5.3			7.5				12.0		14.7	16.8		18.8		2
Entrenchment Ratio							2.7				2.5			10.0				1.8		1.7	3.2		4.6		2
¹ Bank Height Ratio											1.6			1.7				1.0		1.0	1.0		1.0		2
Profile																									
Riffle Length (ft)							11.5													11.0	27.9	24.5	62.0	16.2	8
Riffle Slope (ft/ft)							0.027				0.017			0.033				0.0117		0.006	0.013	0.011	0.031	0.008	8
Pool Length (ft)							40				10.8			14.0						18.0	31.6	30.0	55.0	12.2	7
Pool Max depth (ft)							4.79				2.0			2.7				2.85		2.6	3.3	3.3	3.8	0.5	6
Pool Spacing (ft)							10				4.4			47.2			52.0		101.0	47.0	91.4	91.0	126.0	25.4	7
Pattern																									
Channel Beltwidth (ft)							130.0				20.0			69.0			50.0		173.0	50.0	55.6	54.0	67.0	6.7	5
Radius of Curvature (ft)							25.0				6.0			37.0			20.0		60.0	30.0	44.9	50.0	65.0	9.0	16
Rc:Bankfull width (ft/ft)							1.3				0.7			4.6			0.7		4.6	1.6	2.2		3.1		
Meander Wavelength (ft)							115.0				48.0			85.0			104.0		213.0	135.0	168.4	171.5	208.0	21.3	8
Meander Width Ratio							5.8				2.5			8.6			2.5		8.6	2.6	2.8		3.2		
Transport parameters																									
Reach Shear Stress (competency) lb/f ²	2						0.	53										0.47				0.	42		
Max part size (mm) mobilized at bankfull							38	3.7										35.4				32	2.0		
Stream Power (transport capacity) W/m²	2																								
Additional Reach Parameters																									
Rosgen Classification							Impaii	red C4					C	34				C4				C	34		
Bankfull Velocity (fps)								.4										3.49							
Bankfull Discharge (cfs)								8.4																	
Valley length (ft)								38										1548				11	22		
Channel Thalweg length (ft)								900										1796					95		
Sinuosity (ft)					1.16					1	.3				1.16					15					
Water Surface Slope (Channel) (ft/ft)					0.0051						- 0.0130				0.0047					056					
BF slope (ft/ft)					0.0051										0.0047					057					
³ Bankfull Floodplain Area (acres)																									
⁴ % of Reach with Eroding Banks																									
Channel Stability or Habitat Metric																									
Biological or Other																									
Shaded calls indicate that these will typically not be filled in																									

Shaded cells indicate that these will typically not be filled in.

^{1 =} The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

^{3.} Utilizing survey data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

^{4 =} Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3

				Co	oddle (Creek 1					eam Da - Segr				(975 fe	eet)									
Parameter	Gauge ²	Reg	ional C	urve		Pre-	Existin	g Cond	ition			Refere	ence Re	each(es) Data			Design			Мс	nitorin	g Basel	ine	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD ⁵	n	Min	Mean	Med	Max	SD ⁵	n	Min	Med	Max	Min	Mean	Med	Max	SD ⁵	n
Bankfull Width (ft							20.0				8.0			9.2				20.0		20.4	21.7		22.9		2
Floodprone Width (ft							75.0				20.0			92.0				100.0		96.4	123.4		150.3		2
Bankfull Mean Depth (ft							3.7				1.2			1.5				1.7		1.3	1.3		1.3		2
¹ Bankfull Max Depth (ft)						5.1				1.3			1.9				1.8		2.1	2.2		2.2		2
Bankfull Cross Sectional Area (ft ²							74.5				11.3			12.3				29.3		27.1	28.0		28.8		2
Width/Depth Ratio							5.4				5.3			7.5				12.0		15.3	16.8		18.2		2
Entrenchment Ratio							3.8				2.5			10.0				5.0		4.7	5.7		6.6		2
¹ Bank Height Ratio											1.6			1.7				1.1		1.0	1.0		1.0		2
Profile	<u>-</u>										_									-					
Riffle Length (ft							6.0													18.0	32.0	31.0	48.0	12.3	5
Riffle Slope (ft/ft							0.035				0.017			0.033				0.0114		0.0057	0.0090	0.0076	0.0150	0.0042	4
Pool Length (ft							81.0				10.8			14.0						14.0	47.4	35.0	48.0	30.5	7
Pool Max depth (ft							5.8				2.0			2.7				2.85		2.4	3.0	3.1	3.5	0.4	6
Pool Spacing (ft							7.5				4.4			47.2			52		101	92.0	112.8	114.0	131.0	19.7	4
Pattern																									
Channel Beltwidth (ft											20.0			69.0			50.0		173.0	67.0	77.2	75.0	89.0	9.1	5
Radius of Curvature (ft											6.0			37.0			35.0		56.0	45.0	48.9	50.0	50.0	3.9	7
Rc:Bankfull width (ft/ft											0.7			4.6			0.7		4.6	2.2	2.3		2.2		
Meander Wavelength (ft											48.0			85.0			104.0		213.0	190.0	204.2	210.0	211.0	9.4	5
Meander Width Ratio											2.5			8.6			2.5		8.6	3.3	3.6		3.9		
Transport parameters	<u>, </u>				1		_										1								
Reach Shear Stress (competency) lb/f								53										0.36				0.			
Max part size (mm) mobilized at bankful							38	3.7										27.3				25	5.4		
Stream Power (transport capacity) W/m²	2																								
Additional Reach Parameters																									
Rosgen Classification						ľ	Modified	Channe	el				C	4				C4				C	4		
Bankfull Velocity (fps							5	.9										3.49							
Bankfull Discharge (cfs							44	2.9																	
Valley length (ft)						15	550										1550				70	63		
Channel Thalweg length (ft						1700										1922				9	75				
Sinuosity (ft					1.1					1	.3				1.24				1.	28					
Water Surface Slope (Channel) (ft/ft					0.0052					0.0061	- 0.0130				0.0035					042					
BF slope (ft/ft					0.0052										0.0035				0.0	042					
³ Bankfull Floodplain Area (acres																									
⁴ % of Reach with Eroding Banks																									
Channel Stability or Habitat Metric																									
Biological or Other Shaded cells indicate that these will typically not be filled in.	r																								

Shaded cells indicate that these will typically not be filled in.

^{1 =} The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

^{3.} Utilizing survey data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

^{4 =} Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3

				Ta	ble 1	1a. M	onito	oring D	ata - E	Dimen	siona	al Moi	rphol	ogy S	umma	ry (Dir	nensi	onal I	Paran	neters	s – Cr	oss S	ections	s)											
				Co	oddle	Creek	(Trib	utary	(Indiar	n Run) / 94	Seg	men	t/Read	ch: Up	per (12	295', C	CS's 1	-4) ar	nd Lo	wer (975', C	S's 5-8	8)											
		Cro	ss Sec	tion 1 (Riffle)				Cr	oss Se	ction 2	(Pool)				Cr	oss Se	ction 3	(Riffle))			Cr	oss Sec	ction 4	(Pool)									
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Record elevation (datum) used	542.62	542.62						541.18	541.18						539.00	539.00						538.77	538.77												
Bankfull Width (ft)	19.31	22.90						34.10	35.59						20.80	25.86						33.00	33.51												
Floodprone Width (ft)	88.70	92.50						56.20	60.70						35.40	37.80						45.70	47.90												
Bankfull Mean Depth (ft)	1.03	0.99						1.20	1.16						1.40	1.31						1.30	1.30												A
Bankfull Max Depth (ft)	1.60	2.09						3.30	3.32						2.10	2.39						2.60	2.46												
Bankfull Cross Sectional Area (ft²)	19.90	22.60						39.43	41.46						29.50	33.89						43.50	43.72												
Bankfull Width/Depth Ratio	18.80	23.20						29.50	30.55						14.70	19.73						25.00	25.68												
Bankfull Entrenchment Ratio	4.60	4.04						1.60	1.71						1.70	1.46						1.40	1.43												A
Bankfull Bank Height Ratio	1.00	0.98						1.00	1.00						1.00	1.00						1.00	1.00												A
Cross Sectional Area between end pins (ft ²)	421.80	411.70						457.50	471.20						248.40	262.10						358.10	361.90												
d50 (mm)	4.90	32.00						12.00	27.00						6.00	6.50						0.34	4.40												
		Cro	ss Sec	tion 5 (Riffle)				Cr	oss Se	ection 6	(Pool))			Cr	oss Se	ction 7	(Pool)				Cro	oss Sec	ction 8	(Riffle)								
Based on fixed baseline bankfull elevation ¹	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+														
Record elevation (datum) used	536.34	536.34						535.56	535.56						534.62	534.62						534.36	534.36												
Bankfull Width (ft)	22.90	19.98						19.30	19.03						69.30	34.53						20.40	22.02												
Floodprone Width (ft)	150.30	150.10						95.20	104.40						93.00	99.00						96.40	95.60												
Bankfull Mean Depth (ft)	1.30	1.40						1.50	1.40						0.70	1.07						1.30	1.30												
Bankfull Max Depth (ft)	2.10	1.94						2.40	2.75						3.00	3.14						2.20	2.33												
Bankfull Cross Sectional Area (ft ²)	28.80	27.92						28.20	26.71						48.90	37.08						27.10	28.64												
Bankfull Width/Depth Ratio	18.20	14.30						13.10	13.56						96.30	32.16						15.30	16.93												
Bankfull Entrenchment Ratio	6.60	7.51						5.00	5.49						1.30	2.87						4.70	4.34												
Bankfull Bank Height Ratio	1.00	0.83						1.00	0.94						1.00	1.00						1.00	0.94												
Cross Sectional Area between end pins (ft ²)	823.40	870.60						467.00	467.40						458.80	441.30						442.50	431.60												
d50 (mm)	1.60	0.062						0.30	0.29						0.82	0.15						0.42	0.074												

^{1 =} Widths and depths for monitoring resurvey will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datum established. If the performer has inherited the project and cannot acquire the datum used for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission a footnote in this should be included that states: "It is uncertain if the monitoring datum has been consistent over the monitoring history, which may influence calculated values. Additional data from a prior performer is being acquired to provide confirmation. Values will be recalculated in a future submission based on a consistent datum if determined to be necessary."

imension and Substrate - Riffle only Bankfull Width (ft) 19. Floodprone Width (ft) 35. Bankfull Mean Depth (ft) 1.0		Mean		eline					MY	/ 1				_																								
Bankfull Width (ft) 19. Floodprone Width (ft) 35. Bankfull Mean Depth (ft) 1.0		Mean			Baseline										MY	/-2			MY- 3							MY- 4							MY- 5					
Floodprone Width (ft) 35. Bankfull Mean Depth (ft) 1.0	.3		Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Мах	SD ⁴	n	Min	Mean	Med	Max	SD ⁴			
Bankfull Mean Depth (ft) 1.0		20.1		20.8		2	22.9	24.4		25.9		2																										
	.4	62.1		88.7		2	37.8	65.2		92.5		2																										
15 14 114 5 11 65	0	1.2		1.4		2	1.0	1.2		1.3		2																										
¹ Bankfull Max Depth (ft) 1.6	6	1.9		2.1		2	1.7	2.1	2.1	2.4	0.2	10																										
Bankfull Cross Sectional Area (ft ²) 19.	.9	24.7		29.5		2	22.6	28.2		33.9		2																										
Width/Depth Ratio 14.	.7	16.8		18.8		2	19.7	21.5		23.2		2																										
Entrenchment Ratio 1.7	7	3.2		4.6		2	1.5	2.8		4.0		2																										
¹ Bank Height Ratio 1.0	0	1.0		1.0		2	1.0	1.0		1.0		2																										
rofile																																						
Riffle Length (ft) 11.					16.2	8	4	13.1	12	23	6.6	11																										
Riffle Slope (ft/ft) 0.00	060 0	0.0126	0.0107	0.0310	0.0078	8	0.0077	0.0234	0.0236	0.0425	0.0124	11																										
Pool Length (ft) 18.	.0	31.6	30.0	55.0	12.2	7	13	25.2	20	63	13.3	15																										
Pool Max depth (ft) 2.6	6	3.3	3.3	3.8	0.5	6	2.37	3.23	3.3	4.33	0.63	15																										
Pool Spacing (ft) 47.	.0	91.4	91.0	126.0	25.4	7	35	80.9	80	122.5	30.3	10																										
attern							-																															
Channel Beltwidth (ft) 50.	.0	55.6	54.0	67.0	6.7	5																																
Radius of Curvature (ft) 30.	.0	44.9	50.0	65.0	9.0	16										Patt	tern data	a will no	t tynical	ly he col	lected i	ınless v	ieual da	ta dimer	nsional d	lata or n	rofile da	ta										
Rc:Bankfull width (ft/ft) 1.6	6	2.2		3.1												ı alı	ioni dale	z wiii iio					s visual data, dimensional data or profile data nifts from baseline															
Meander Wavelength (ft) 135		168.4	171.5	208.0	21.3	8																																
Meander Width Ratio 2.6	6	2.8		3.2																																		
dditional Reach Parameters							-																															
Rosgen Classification			C	4			Π		С	4																												
Channel Thalweg length (ft)			129						12										+																			
Sinuosity (ft)			1.1						1.1										 																			
Water Surface Slope (Channel) (ft/ft)			0.00						0.00																													
BF slope (ft/ft)			0.00						0.00)55																												
³ Ri% / Ru% / P% / G% / S%																																						
³ SC% / Sa% / G% / C% / B% / Be%																																						
³ d16 / d35 / d50 / d84 / d95 /																																						
² % of Reach with Eroding Banks									2.	3																												
Channel Stability or Habitat Metric																																						
Biological or Other																																						

											Ex Coddle			11c. butar											et)											
Parameter			Base	line					M	′- 1					M	Y-2					M۱	/- 3					М	Y- 4					MY	'- 5		
Dimension and Substrate - Riffle only	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n	Min	Mean	Med	Max	SD ⁴	n
Bankfull Width (ft)	20.4	21.7		22.9		2	20.0	21.0		22.0		2																								
Floodprone Width (ft)	96.4	123.4		150.3		2	95.6	122.9		150.1		2																								
Bankfull Mean Depth (ft)	1.3	1.3		1.3		2	1.3	1.4		1.4		2																								
¹ Bankfull Max Depth (ft)	2.1	2.2		2.2		2	1.9	2.2	2.2	2.4	0.2	7																								
Bankfull Cross Sectional Area (ft ²)	27.1	28.0		28.8		2	27.9	28.3		28.6		2																								
Width/Depth Ratio	15.3	16.8		18.2		2	14.3	15.6		16.9		2																								
Entrenchment Ratio	4.7	5.7		6.6		2	4.3	5.9		7.5		2																								
¹ Bank Height Ratio	1.0	1.0		1.0		2	8.0	0.9		0.9		2																								
Profile																																				
Riffle Length (ft)	18.0	32.0	31.0	48.0	12.3	5	4.0	13.5	14.5	24.0	7.2	6																								
Riffle Slope (ft/ft)	0.0057	0.0090	0.0076	0.0150	0.0042	4	0.0088	0.0141	0.0152	0.0188	0.0036	6																								\Box
Pool Length (ft)	14.0	47.4	35.0	48.0	30.5	7	26.0	45.6	48.0	71.0	17.6	7																								
Pool Max depth (ft)	2.4	3.0	3.1	3.5	0.4	6	2.4	3.0	2.8	3.9	0.5	7																								\Box
Pool Spacing (ft)	92.0	112.8	114.0	131.0	19.7	4	45.0	93.1	107.0	141.0	38.0	6																								\Box
Pattern							_																													
Channel Beltwidth (ft)	67.0	77.2	75.0	89.0	9.1	5																														
Radius of Curvature (ft)	45.0	48.9	50.0	50.0	3.9	7										ا											<i>c</i> 1									
Rc:Bankfull width (ft/ft)	2.2	2.3		2.2												Pat	tern dat	a wiii no	t typica	lly be co indicate						i data oi	r profile	aata								
Meander Wavelength (ft)	190.0	204.2	210.0	211.0	9.4	5																														
Meander Width Ratio	3.3	3.6		3.9																																
Additional Reach Parameters																																				
Rosgen Classification			C4	4					С	4																										
Channel Thalweg length (ft)			97	'5					97	' 5																										
Sinuosity (ft)			1.2	28					1.3	28																										
Water Surface Slope (Channel) (ft/ft)			0.00)42					0.0)42																										
BF slope (ft/ft)			0.00)42					0.0	046																										
³ Ri% / Ru% / P% / G% / S%																																				
³ SC% / Sa% / G% / C% / B% / Be%																																				
³ d16 / d35 / d50 / d84 / d95 /																																				
² % of Reach with Eroding Banks									()																										
Channel Stability or Habitat Metric																																				

Shaded cells indicate that these will typically not be filled in.

1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile.

2 = Proportion of reach exhibiting banks that are eroding based on the visual survey from visual assessment table

3 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

4. = Of value/needed only if the n exceeds 3

Appendix E. Hydrologic Data

Table 12 – Verification of Bankfull Events

Table 12. Verification of Bankfull Events															
Coddle C	Coddle Creek Tributary (Indian Run)/ 94 Segment/Reach: 2270 feet														
Date of Data Collection	Date of Occurrence	Method	Photo												
5/30/2012	Between 5/11/2011 - 5/30/2012	Visual observation of wrack lines; stream gauge	See below												

